Nothing
#' @title Logarithmic Minimum Test for Independence in Two-Way Contingency Table
#'
#' @description
#' Calculates the p-value of the logarithmic minimum test.
#'
#' @param stat a logarithmic minimum statistic value
#' @param nr a number of rows
#' @param nc a number of columns
#' @param n a sample size
#' @param B an integer specifying the number of replicates used in the Monte Carlo test (optional)
#' @return The function returns the p-value of the logarithmic minimum test.
#' @rdname Lms2.pvalue
#'
#' @details
#' The p-value of the logarithmic minimum test for independence in r x c contingency table,
#'
#' @author
#' Piotr Sulewski, \email{piotr.sulewski@apsl.edu.pl}, Pomeranian University in Slupsk.
#'
#' @references
#' {Sulewski, P. (2019). \emph{The LMS for Testing Independence in Two-way Contingency Tables.} Biometrical Letters 56(1), 17-43}
#'
#' @examples
#' Lms2.pvalue(Lms2.stat(table1), 2, 2, 40, B = 1e3)
#' Lms2.pvalue(Lms2.stat(table2), 2, 3, 60, B = 1e2)
#'
#' @export
Lms2.pvalue <- function(stat, nr, nc, n, B = 1e4) {
Q <- numeric(B)
CDF <- numeric(B+1)
for (i in 1:B) CDF[i] <- i / (B + 1)
CDF[B+1] = 1
pij <- array(1 / (nr * nc), dim = c(nr, nc))
for (u in 1:B){
nij <- GenTab2(pij, n)
Q[u] <- Lms2.stat(nij)
}
Q <- sort(Q)
poz <- B+1
for (i in B:1) {
if (Q[i] > stat) poz = i else break
}
return(1 - CDF[poz])
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.