Nothing
#' @title Modular test for independence in two-way contingency table
#'
#' @description
#' Calculates the critical value of the modular test for independence in two-way contingency table
#' see formula (9) in the article.
#'
#' @param nr a number of rows
#' @param nc a number of columns
#' @param n a sample size
#' @param alfa a significance level
#' @param B an integer specifying the number of replicates used in the Monte Carlo test (optional)
#' @return The function returns the critical value of the modular test.
#' @rdname Mod2.cv
#'
#' @details
#' The Critical value of the modular test for independence in r x c contingency table,
#' see formula (2) in the article.
#'
#' @author
#' Piotr Sulewski, \email{piotr.sulewski@apsl.edu.pl}, Pomeranian University in Slupsk.
#'
#' @references
#' {Sulewski, P. (2016). \emph{Moc testów niezależności w tablicy dwudzielczej większej niż 2×2,} Przegląd statystyczny 63(2), 190-210}
#'
#' @examples
#' \donttest{Mod2.cv(2, 2, 40, 0.05, B = 1e2)}
#' \donttest{Mod2.cv(2, 3, 60, 0.1)}
#'
#' @export
Mod2.cv <- function(nr, nc, n, alfa, B = 1e4) {
Q <- numeric(B)
pij <- array(1 / (nr * nc), dim = c(nr, nc))
for (u in 1:B){
nij <- GenTab2(pij, n)
Q[u] <- Mod2.stat(nij)
}
Q <- sort(Q)
return(Q[(1 - alfa) * B])
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.