Nothing
## ----initialize, include = FALSE----------------------------------------------
knitr::opts_chunk$set(
warning = FALSE,
message = FALSE
)
library( knitr )
library( PUMP )
set.seed( 524235326 )
## ----gen.data-----------------------------------------------------------------
pp <- pump_power( "d3.1_m3rr2rr", MDES = 0.2,
M = 5, rho = 0.8,
MTP = "BH",
nbar = 30, J = 7, K = 5, Tbar = 0.5 )
sim.data <- gen_sim_data( pp )
## ----first.dataset------------------------------------------------------------
head( sim.data[[1]] )
## ----single.outcome, warning=FALSE--------------------------------------------
pp.one <- update( pp, M = 1 )
sim3 <- gen_sim_data( pp.one )
head( sim3 )
## ----sep.data-----------------------------------------------------------------
sim.data.v2 <- gen_sim_data( pp, return.as.dataframe = FALSE )
names( sim.data.v2 )
## ----model.params-------------------------------------------------------------
model.params.list <- list(
M = 3 # number of outcomes
, J = 7 # number of schools
, K = 5 # number of districts
# (for two-level model, set K = 1)
, nbar = 30 # number of individuals per school
, rho.default = 0.5 # default rho value (optional)
################################################## impact
, MDES = 0.125 # minimum detectable effect size
################################################## level 3: districts
, R2.3 = 0.1 # percent of district variation
# explained by district covariates
, ICC.3 = 0.2 # district intraclass correlation
, omega.3 = 0.1 # ratio of district effect size variability
# to random effects variability
################################################## level 2: schools
, R2.2 = 0.1 # percent of school variation
# explained by school covariates
, ICC.2 = 0.2 # school intraclass correlation
, omega.2 = 0.1 # ratio of school effect size variability
# to random effects variability
################################################## level 1: individuals
, R2.1 = 0.1 # percent of indiv variation explained
# by indiv covariates
)
## ----model.params.full, eval = FALSE------------------------------------------
# M <- 3
# rho.default <- 0.5
# default.rho.matrix <- gen_corr_matrix(M = M, rho.scalar = rho.default)
# default.kappa.matrix <- matrix(0, M, M)
#
# model.params.list <- list(
# M = 3 # number of outcomes
# , J = 7 # number of schools
# , K = 5 # number of districts
# # (for two-level model, set K = 1)
# , nbar = 30 # number of individuals per school
# , S.id = NULL # N-length vector of school assignments
# , D.id = NULL # N-length vector of district assignments
# ################################################## grand mean outcome and impact
# , Xi0 = 0 # scalar grand mean outcome under no treatment
# , MDES = rep(0.125, M) # minimum detectable effect size
# ################################################## level 3: districts
# , R2.3 = rep(0.1, M) # percent of district variation
# # explained by district covariates
# , rho.V = default.rho.matrix # MxM correlation matrix of district covariates
# , ICC.3 = rep(0.2, M) # district intraclass correlation
# , omega.3 = rep(0.1, M) # ratio of district effect size variability
# # to random effects variability
# , rho.w0 = default.rho.matrix # MxM matrix of correlations for district random effects
# , rho.w1 = default.rho.matrix # MxM matrix of correlations for district impacts
# , kappa.w = default.kappa.matrix # MxM matrix of correlations between district
# # random effects and impacts
# ################################################## level 2: schools
# , R2.2 = rep(0.1, M) # percent of school variation
# # explained by school covariates
# , rho.X = default.rho.matrix # MxM correlation matrix of school covariates
# , ICC.2 = rep(0.2, M) # school intraclass correlation
# , omega.2 = rep(0.1, M) # ratio of school effect size variability
# # to random effects variability
# , rho.u0 = default.rho.matrix # MxM matrix of correlations for school random effects
# , rho.u1 = default.rho.matrix # MxM matrix of correlations for school impacts
# , kappa.u = default.kappa.matrix # MxM matrix of correlations between school
# # random effects and impacts
# ################################################## level 1: individuals
# , R2.1 = rep(0.1, M) # percent of indiv variation explained
# # by indiv covariates
# , rho.C = default.rho.matrix # MxM correlation matrix of individual covariates
# , rho.r = default.rho.matrix # MxM matrix of correlations for individual residuals
# )
## ----gen.sim.data-------------------------------------------------------------
sim.data <- gen_sim_data(d_m = 'd3.3_m3rc2rc', model.params.list, Tbar = 0.5)
## ----convert.params-----------------------------------------------------------
dgp.params.list <- convert_params(model.params.list)
## ----gen.full.data------------------------------------------------------------
sim.data <- gen_base_sim_data(dgp.params.list,
dgp.params = TRUE,
return.as.dataframe = FALSE )
## ----tx-----------------------------------------------------------------------
d_m <- 'd3.3_m3rc2rc'
sim.data$T.x <- gen_T.x(
d_m = d_m,
S.id = sim.data$ID$S.id,
D.id = sim.data$ID$D.id,
Tbar = 0.5
)
sim.data$Yobs <- gen_Yobs(sim.data, T.x = sim.data$T.x)
## ----convert.dataframe--------------------------------------------------------
sim.data <- PUMP:::makelist_samp( sim.data )
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.