Nothing
## ----setup, include = FALSE---------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
options(rmarkdown.html_vignette.check_title = FALSE)
## ---- include = FALSE---------------------------------------------------------
library(PVplr)
library(knitr)
library(dplyr)
library(ggplot2)
library(broom)
library(purrr)
library(tidyr)
var_list <- plr_build_var_list(time_var = "timestamp",
power_var = "power",
irrad_var = "g_poa",
temp_var = "mod_temp",
wind_var = NA)
test_dfc <- plr_cleaning(test_df,
var_list,
irrad_thresh = 100,
low_power_thresh = 0.01,
high_power_cutoff = NA)
test_xbx_wbw_res <- plr_xbx_model(test_dfc, var_list = var_list, by = "week", data_cutoff = 30, predict_data = NULL)
## -----------------------------------------------------------------------------
test_dfc_removed_saturation <- plr_saturation_removal(test_dfc, var_list, sat_limit = 3000, power_thresh = 0.99)
# fraction of data kept
nrow(test_dfc_removed_saturation)/nrow(test_dfc)
## -----------------------------------------------------------------------------
# default values inserted for reference
#df_failure <- plr_failure_test(test_dfc, var_list, corr_thresh = 0.95, plot = FALSE, by_month = FALSE)
# fraction of data kept
#nrow(df_failure)/nrow(test_dfc)
## -----------------------------------------------------------------------------
test_xbx_wbw_decomp <- plr_decomposition(test_xbx_wbw_res, freq = 52, power_var = 'power_var', time_var = 'time_var', plot = FALSE, plot_file = NULL, title = NULL, data_file = NULL)
# generate a pretty table
knitr::kable(test_xbx_wbw_decomp[1:5, ], caption = "XbX Week-by-Week Decomposition: Resulting Data")
## -----------------------------------------------------------------------------
# make plots of the decomposed data
raw_plot <- ggplot2::ggplot(test_xbx_wbw_decomp, aes(age, raw)) +
geom_point() +
geom_smooth( method = "lm") +
theme_bw()
trend_plot <- ggplot2::ggplot(test_xbx_wbw_decomp, aes(age, trend)) +
geom_point() +
geom_smooth( method = "lm") +
theme_bw()
seasonal_plot <- ggplot2::ggplot(test_xbx_wbw_decomp, aes(age, seasonal)) +
geom_point() +
geom_smooth( method = "lm") +
theme_bw()
raw_plot
trend_plot
seasonal_plot
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.