PartialNetwork-package | R Documentation |
The PartialNetwork package implements instrumental variables (IV) and Bayesian estimators for the linear-in-mean SAR model (e.g. Bramoulle et al., 2009) when
the distribution of the network is available, but not the network itself. To make the computations faster PartialNetwork uses C++
through the Rcpp package (Eddelbuettel et al., 2011).
Two main functions are provided to estimate the linear-in-mean SAR model using only the distribution of the network. The function
sim.IV
generates valid instruments using the distribution of the network (see Propositions 1 and 2 in Boucher and Houndetoungan (2020)). Once the instruments are constructed,
one can estimate the model using standard IV estimators. We recommend the function ivreg
from the package AER (Kleiber et al., 2020). The function mcmcSAR performs a Bayesian estimation based on an adaptive MCMC (Atchade and Rosenthal, 2005). In that case,
the distribution of the network acts as prior distribution for the network.
The package PartialNetwork also implements a network formation model based on Aggregate Relational Data (McCormick and Zheng, 2015; Breza et al., 2017). This part of the package
relies on the functions rvMF, dvMF and logCpvMF partly implemented in C++, but using code from movMF (Hornik and Grun, 2014).
Maintainer: Aristide Houndetoungan ahoundetoungan@gmail.com
Authors:
Vincent Boucher vincent.boucher@ecn.ulaval.ca
Atchade, Y. F., & Rosenthal, J. S., 2005, On adaptive markov chain monte carlo algorithms, Bernoulli, 11(5), 815-828, \Sexpr[results=rd]{tools:::Rd_expr_doi("10.3150/bj/1130077595")}.
Boucher, V., & Houndetoungan, A., 2022, Estimating peer effects using partial network data, Centre de recherche sur les risques les enjeux economiques et les politiques publiques, https://ahoundetoungan.com/files/Papers/PartialNetwork.pdf.
Bramoulle, Y., Djebbari, H., & Fortin, B., 2009, Identification of peer effects through social networks, Journal of econometrics, 150(1), 41-55, \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1016/j.jeconom.2008.12.021")}.
Breza, E., Chandrasekhar, A. G., McCormick, T. H., & Pan, M., 2020, Using aggregated relational data to feasibly identify network structure without network data, American Economic Review, 110(8), 2454-84, \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1257/aer.20170861")}
Eddelbuettel, D., Francois, R., Allaire, J., Ushey, K., Kou, Q., Russel, N., ... & Bates, D., 2011,
Rcpp: Seamless R and C++
integration, Journal of Statistical Software, 40(8), 1-18, \Sexpr[results=rd]{tools:::Rd_expr_doi("10.18637/jss.v040.i08")}
Lee, L. F., 2004, Asymptotic distributions of quasi-maximum likelihood estimators for spatial autoregressive models. Econometrica, 72(6), 1899-1925, \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1111/j.1468-0262.2004.00558.x")}
LeSage, J. P. 1997, Bayesian estimation of spatial autoregressive models, International regional science review, 20(1-2), 113-129, \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1177/016001769702000107")}.
Mardia, K. V., 2014, Statistics of directional data, Academic press.
McCormick, T. H., & Zheng, T., 2015, Latent surface models for networks using Aggregated Relational Data, Journal of the American Statistical Association, 110(512), 1684-1695, \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1080/01621459.2014.991395")}.
Wood, A. T., 1994, Simulation of the von Mises Fisher distribution. Communications in statistics-simulation and computation, 23(1), 157-164. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1080/03610919408813161")}.
Useful links:
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.