Nothing
#' @title Multiple Linear Regression
#' @name reg
#' @author {
#' Ali Arminian <abeyran@gmail.com>
#' }
#'
#' @description
#' `r lifecycle::badge("experimental")`
#'
#' * `reg()` performs a multiple linear regression analysis with extracting the attributed parameters
#'
#' @details
#' The `reg` function fits a multiple linear regression analysis
#' of one or more independent (exogenous) variables on a dependent(endogenous)
#' variable in a linear pattern along with testing the significance of
#' parameters. It is important that according to the type of data may produce some warning errors e.g., for dtsimp as:
#' Warning message: In summary.lm(mlreg): essentially perfect fit: summary may be unreliable.
#' This case is due to the intrinsic characteristics of data
#'
#' @param datap The data set
#' @param resp an integer value indicating the column in `datap` that
#' @param verbose If `verbose = TRUE` then some results are
#' printed in the console.
#' corresponds to the response variable.
#' @importFrom stats cor lm pt sd
#' @importFrom pastecs stat.desc
#' @importFrom grDevices dev.new
#'
#' @seealso `multiple linear regression`
#'
#' @keywords multiple
#' @return An object of class list
#' @usage reg(datap, resp, verbose = FALSE)
#'
#' @examples
#' \donttest{
#' data(dtsimp)
#' reg(dtsimp, 1, verbose = FALSE)
#' }
#' @examples
#' \donttest{
#' data(heart)
#' reg(heart, 1, verbose = FALSE)
#' }
#' @export
reg <- function(datap, resp, verbose = FALSE)
{
datap <- dataprep(datap)
mlreg <- lm(datap[, resp] ~ ., data = datap)
sumlreg <- summary(mlreg)
mlsuml <- list(mlreg, sumlreg)
class(mlsuml) <- "list"
if (verbose) {
cat("MUltiple linear regression output:\n")
cat(".................................\n")
}
return(mlsuml)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.