Nothing
library(PatientLevelPrediction)
# This demo will generate a stacked ensemble consisting
# of a Logistic Regression and Random Forest model.
# Dependent on your system it can take some time to run
# We first simulate some data
cat("Press a key to continue")
invisible(readline())
# Simulate plpData
data(plpDataSimulationProfile)
set.seed(1234)
sampleSize <- 2000
plpData <- simulatePlpData(
plpDataSimulationProfile,
n = sampleSize
)
# Generate the study population
populationSettings <- createStudyPopulationSettings(
binary = TRUE,
firstExposureOnly = FALSE,
washoutPeriod = 0,
removeSubjectsWithPriorOutcome = FALSE,
priorOutcomeLookback = 99999,
requireTimeAtRisk = TRUE,
minTimeAtRisk = 0,
riskWindowStart = 0,
startAnchor = 'cohort start',
riskWindowEnd = 365,
endAnchor = 'cohort start'
)
# Let's set the models and model building parameters
cat("Press a key to continue")
invisible(readline())
# Use LASSO logistic regression and Random Forest as base predictors
model1 <- setLassoLogisticRegression()
model2 <- setRandomForest()
# Specify the spilt settings
splitSettings <- createDefaultSplitSetting(
testFraction = 0.2,
nfold = 4,
splitSeed = 100 # this makes sure same split is done
)
# Specify the ensemble strategy
ensembleStrategy <- 'stacked'
# Now we build the stacked ensemble
cat("Press a key to continue")
invisible(readline())
ensembleResults <- runEnsembleModel(
ensembleStrategy = ensembleStrategy,
parallel = T,
maxCores = 2,
dataList = list(
plpData,
plpData
),
outcomeIds = list(2,2),
populationSettings = list(
populationSettings,
populationSettings
),
sampleSettings = list(
createSampleSettings(),
createSampleSettings()
),
featureEngineeringSettings = list(
createFeatureEngineeringSettings(),
createFeatureEngineeringSettings()
),
preprocessSettings = list(
createPreprocessSettings(),
createPreprocessSettings()
),
modelList = list(
model1,
model2
),
splitSettings = splitSettings
)
# You could now save the model and apply it on other data as described in more detail
# in the vignette.
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.