PoissonBinomial-package | R Documentation |
This package implements various algorithms for computing the probability mass function, the cumulative distribution function, quantiles and random numbers of both ordinary and generalized Poisson binomial distributions.
Hong, Y. (2013). On computing the distribution function for the Poisson binomial distribution. Computational Statistics & Data Analysis, 59, pp. 41-51. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1016/j.csda.2012.10.006")}
Biscarri, W., Zhao, S. D. and Brunner, R. J. (2018) A simple and fast method for computing the Poisson binomial distribution. Computational Statistics and Data Analysis, 31, pp. 216–222. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1016/j.csda.2018.01.007")}
Zhang, M., Hong, Y. and Balakrishnan, N. (2018). The generalized Poisson-binomial distribution and the computation of its distribution function. Journal of Statistical Computational and Simulation, 88(8), pp. 1515-1527. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1080/00949655.2018.1440294")}
Maintainer: Florian Junge florian.junge@mailbox.org
Useful links:
Report bugs at https://github.com/fj86/PoissonBinomial/issues
# Functions for ordinary Poisson binomial distributions
set.seed(1)
pp <- c(1, 0, runif(10), 1, 0, 1)
qq <- seq(0, 1, 0.01)
dpbinom(NULL, pp)
ppbinom(7:10, pp, method = "DivideFFT")
qpbinom(qq, pp, method = "Convolve")
rpbinom(10, pp, method = "RefinedNormal")
# Functions for generalized Poisson binomial distributions
va <- rep(5, length(pp))
vb <- 1:length(pp)
dgpbinom(NULL, pp, va, vb, method = "Convolve")
pgpbinom(80:100, pp, va, vb, method = "Convolve")
qgpbinom(qq, pp, va, vb, method = "Convolve")
rgpbinom(100, pp, va, vb, method = "Convolve")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.