Nothing
#' This is the function that computes the skeletion tree from data.
#' The input is a matrix x whose rows are the data vectors.
#' The sample size n is the number of rows.
#' The number of variables p is the number of columns
#' The function outputs the skeleton tree g.
#' @param x The input data matrix.
condeptree = function(x) {
p = ncol(x)
n = nrow(x)
d = matrix(0, nrow = p, ncol = p)
for (i in 1:(p-1)) {
for (j in (i+1):p) {
d[i,j] = xicorln(x[,i], x[,j])
d[j,i] = xicorln(x[,j], x[,i])
}
}
m = d
maxval = max(d)
for (i in 1:(p-1)) {
for (j in (i+1):p) {
u = d[,i]
v = d[,j]
w1 = setdiff(which(u >= d[j,i]), c(i,j))
w2 = setdiff(which(v >= d[i,j]), c(i,j))
if (length(intersect(w1,w2)) > 0) {
m[i,j] = 0
m[j,i] = 0
}
if (m[i,j] != 0 & m[j,i] != 0) {
u1 = maxval + 1 - m[i,j]
u2 = maxval + 1 - m[j,i]
u = max(u1,u2)
m[i,j] = u
m[j,i] = u
}
}
}
m = graph_from_adjacency_matrix(m, mode = "undirected", weighted = TRUE)
g = mst(m)
return(g)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.