MDS | R Documentation |
Classical multidimensional scaling of a data matrix. Also known as principal coordinates analysis
MDS(DataOrDistances,method='euclidean',OutputDimension=2,PlotIt=FALSE,Cls)
DataOrDistances |
Numerical matrix defined as either
or
|
method |
method specified by distance string: 'euclidean','cityblock=manhatten','cosine','chebychev','jaccard','minkowski','manhattan','binary' |
OutputDimension |
Number of dimensions in the Outputspace, default=2 |
PlotIt |
Default: FALSE, If TRUE: Plots the projection as a 2d visualization. |
Cls |
[1:n,1] Optional,: only relevant if PlotIt=TRUE. Numeric vector, given Classification in numbers: every element is the cluster number of a certain corresponding element of data. |
An short overview of different types of projection methods can be found in [Thrun, 2018, p.42, Fig. 4.1] (\Sexpr[results=rd]{tools:::Rd_expr_doi("10.1007/978-3-658-20540-9")}).
ProjectedPoints |
[1:n,OutputDimension], n by OutputDimension matrix containing coordinates of the Projection |
Eigenvalues |
the eigenvalues of MDSvalues*MDSvalues' |
Stress |
Shephard-Kruskal Stress |
A wrapper for cmdscale
You can use the standard ShepardScatterPlot
or the better approach through the ShepardDensityPlot
of the CRAN package DataVisualizations
.
Michael Thrun
data('Hepta')
Data=Hepta$Data
Proj=MDS(Data)
## Not run:
PlotProjectedPoints(Proj$ProjectedPoints,Hepta$Cls)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.