| tSNE | R Documentation |
T-distributed Stochastic Neighbor Embedding res = tSNE(Data, KNN=30,OutputDimension=2)
tSNE(DataOrDistances,k,OutputDimension=2,Algorithm='tsne_cpp',
method="euclidean",Whitening=FALSE, Iterations=1000,PlotIt=FALSE,Cls,num_threads=1,...)
DataOrDistances |
Numerical matrix defined as either
or
|
k |
number of k nearest neighbors=number of effective nearest neighbors("perplexity"); Important parameter. If not given, settings of packages of t-SNE will be used depending |
OutputDimension |
Number of dimensions in the Outputspace, default=2 |
Algorithm |
'tsne_cpp': T-Distributed Stochastic Neighbor Embedding using a Barnes-HutImplementation in C++ of Rtsne. Requires Version >= 0.15 of Rtsne for multicore parallelisation. 'tsne_opt_cpp': T-Distributed Stochastic Neighbor Embedding with automated optimized parameters using a Barnes-HutImplementation in C++ of [Ulyanov, 2016]. 'tsne_r': pure R implementation of the t-SNE algorithm of of tsne |
method |
method specified by distance string: 'euclidean','cityblock=manhatten','cosine','chebychev','jaccard','minkowski','manhattan','binary' |
Whitening |
A boolean value indicating whether the matrix data should be whitened (tsne_r) or if pca should be used priorly (tsne_cpp) |
Iterations |
maximum number of iterations to perform. |
PlotIt |
Default: FALSE, If TRUE: Plots the projection as a 2d visualization. OutputDimension>2: only the first two dimensions will be shown |
Cls |
[1:n,1] Optional,: only relevant if PlotIt=TRUE. Numeric vector, given Classification in numbers: every element is the cluster number of a certain corresponding element of data. |
num_threads |
Number of threads for parallel computation, only usable for Algorithm='tsne_cpp' or 'tsne_opt_cpp' |
... |
Further arguments passed on to either 'Rtsne' or 'tsne' |
An short overview of different types of projection methods can be found in [Thrun, 2018, p.42, Fig. 4.1], \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1007/978-3-658-20540-9")}.
List of
ProjectedPoints |
[1:n,OutputDimension], n by OutputDimension matrix containing coordinates of the Projection |
ModelObject |
NULL for tsne_r, further information if tsne_cpp is selected |
A wrapper for Rtsne (Algorithm='tsne_cpp'),
Multicore-opt-tSNE (Algorithm='tsne_opt_cpp'),
or for tsne (Algorithm='tsne_r')
You can use the standard ShepardScatterPlot or the better approach through the ShepardDensityPlot of the CRAN package DataVisualizations.
Michael Thrun, Luca Brinkmann
Anna C. Belkina, Christopher O. Ciccolella, Rina Anno, Josef Spidlen, Richard Halpert, Jennifer Snyder-Cappione: Automated optimal parameters for T-distributed stochastic neighbor embedding improve visualization and allow analysis of large datasets, bioRxiv 451690, doi: https://doi.org/10.1101/451690, 2018.
L.J.P van der Maaten: Accelerating t-SNE using tree-based algorithms, Journal of Machine Learning Research 15.1:3221-3245, 2014.
Ulyanov, Dmitry: Multicore-TSNE, GitHub repository URL https://github.com/DmitryUlyanov/Multicore-TSNE, 2016.
data('Hepta')
Data=Hepta$Data
## Not run:
Proj=tSNE(Data,k=7)
PlotProjectedPoints(Proj$ProjectedPoints,Hepta$Cls)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.