| dict_reliability | R Documentation | 
Reliability analysis (Cronbach's \alpha and average cosine similarity) and Principal Component Analysis (PCA) of a dictionary, with visualization of cosine similarities between words (ordered by the first principal component loading). Note that Cronbach's \alpha can be misleading when the number of items/words is large.
dict_reliability(
  data,
  words = NULL,
  pattern = NULL,
  alpha = TRUE,
  sort = TRUE,
  plot = TRUE,
  ...
)
| data | A  | 
| words | [Option 1] Character string(s). | 
| pattern | [Option 2] Regular expression. If  | 
| alpha | Estimate the Cronbach's  | 
| sort | Sort items by the first principal component loading (PC1)? Defaults to  | 
| plot | Visualize the cosine similarities? Defaults to  | 
| ... | Arguments passed on to  | 
A list object of new class reliability:
alphaCronbach's \alpha
eigenEigen values from PCA
pcaPCA (only 1 principal component)
pca.rotationPCA with varimax rotation (if potential principal components > 1)
itemsItem statistics
cos.sim.matA matrix of cosine similarities of all word pairs
cos.simLower triangular part of the matrix of cosine similarities
Download pre-trained word vectors data (.RData): https://psychbruce.github.io/WordVector_RData.pdf
Nicolas, G., Bai, X., & Fiske, S. T. (2021). Comprehensive stereotype content dictionaries using a semi-automated method. European Journal of Social Psychology, 51(1), 178–196.
cosine_similarity()
pair_similarity()
plot_similarity()
tab_similarity()
most_similar()
dict_expand()
d = as_embed(demodata, normalize=TRUE)
dict = dict_expand(d, "king")
dict_reliability(d, dict)
dict.cn = dict_expand(d, "China", threshold=0.65)
dict_reliability(d, dict.cn)
dict_reliability(d, c(dict, dict.cn))
# low-loading items should be removed
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.