Nothing
#' Merging the three financial datasets
#'
#' Function to merge the three financial datasets from the three different platforms to obtain a complete dataset to have a comprhensive overview of the investements.
#'
#' @param data_RENDIS Dataset of class 'data.frame'. Specify the dataset obtained from the ReNDiS database by the \code{get_data_RENDIS} function.
#' @param data_OBDAP Dataset of class 'data.frame'. Specify the dataset obtained from the OpenBDAP database by the \code{get_data_OBDAP} function.
#' @param data_OC Dataset of class 'data.frame'. Specify the dataset obtained from the OpenCoesione database by the \code{get_data_region_OC} or \code{get_data_theme_OC} function.
#'
#'
#' @returns Object of class \code{data.frame} showing 28 variables:
#'
#' Descriptive Variables:
#' \itemize{
#'\item{CUP (\code{character})}
#' \item{Intervention (\code{character})}
#' \item{Source (\code{character})}
#' }
#'
#' Financial Variables:
#' \itemize{
#' \item{State Funding (\code{numeric})}
#' \item{EU Funding (\code{numeric})}
#' \item{Local Authorities Funding (\code{numeric})}
#' \item{Private Funding (\code{numeric})}
#' \item{Other Funding (\code{numeric})}
#' \item{Finance (\code{numeric})}
#' }
#'
#' Geographical References:
#' \itemize{
#' \item{DEN_REGION (\code{character})}
#' \item{DEN_PROVINCE (\code{character})}
#' \item{DEN_MUNICIPALITY (\code{character})}
#' \item{COD_REGION (\code{character})}
#' \item{COD_PROVINCE (\code{character})}
#' \item{COD_MUNICIPALITY (\code{character})}
#' \item{geom (\code{character})}
#' }
#'
#' Legislative process main steps:
#' \itemize{
#' \item{Feasibility Study Starting Date (\code{character})}
#' \item{Feasibility Study Ending Date (\code{character})}
#' \item{Preliminary Design Starting Date (\code{character})}
#' \item{Preliminary Design Ending Date (\code{character})}
#' \item{Definitive Design Starting Date (\code{character})}
#' \item{Definitive Design Ending Date (\code{character})}
#' \item{Executive Design Starting Date (\code{character})}
#' \item{Executive Design Ending Date (\code{character})}
#' \item{Works Execution Starting Date (\code{character})}
#' \item{Works Execution Ending Date (\code{character})}
#' \item{Conclusion Starting Date (\code{character})}
#' \item{Conclusion Ending Date (\code{character})}
#' }
#'
#'
#' @author Lorena Ricciotti
#'
#' @examples
#' data(OCpoint)
#' data(OBDAPpoint)
#' data(RENDISpoint)
#' data_all <- merge_data(RENDISpoint, OBDAPpoint, OCpoint)
#'
#' @export
merge_data <- function(data_RENDIS, data_OBDAP, data_OC) {
# Rename columns and add the column 'Source'
if(length(data_RENDIS) == 26){
data_RENDIS <- data_RENDIS %>% dplyr::mutate("Operability" = NA) %>% dplyr::select(1:25, 27, dplyr::everything() )
}
data_RENDIS <- data_RENDIS %>%
dplyr::mutate(Source = "Rendis") %>%
dplyr::select(-.data$Type)
data_OBDAP <- data_OBDAP %>%
dplyr::mutate(Finance = rowSums(data_OBDAP[, 11:15], na.rm = T)) %>%
dplyr::mutate(Source = "OpenBDAP", 'FeasibilityStudyStartingDate' = NA,
'FeasibilityStudyEndingDate' = NA, 'PreliminaryDesignStartingDate' = NA,
'PreliminaryDesignEndingDate' = NA, 'DefinitiveDesignStartingDate' = NA,
"DefinitiveDesignEndingDate" = NA, 'ExecutiveDesignStartingDate' = NA,
"ExecutiveDesignEndingDate" = NA,'InterventionClosed' =NA)
data_OC <- data_OC %>% dplyr::mutate('StateFunding' = rowSums(data_OC[,16:20], na.rm = T),
'LocalAuthoritiesFunding' = rowSums(data_OC[,21:23], na.rm=T),
'OtherFunding' = rowSums(data_OC[,24:26], na.rm =T))
data_OC <- data_OC %>%
dplyr::rename(Finance = "TotalPublicFunding") %>%
dplyr::mutate(Source = "OpenCoesione") %>%
dplyr::mutate('InterventionClosed' = as.character(NA),"Operability" = as.character(NA))
# Select columns
data_OC <- data_OC %>% dplyr::select(colnames(data_RENDIS), colnames(data_OBDAP[11:15]))
#data_OC <- data_OC %>% dplyr::mutate(dplyr::across(c(8:21), as.character))
data_OBDAP <- data_OBDAP %>% dplyr::select(colnames(data_RENDIS), colnames(data_OBDAP[11:15]))
#data_OC$Finance <- as.numeric(data_OC$Finance)
data_OBDAP$COD_REGION <- as.character(data_OBDAP$COD_REGION)
# Merge
merged_data <- dplyr::bind_rows(data_OC, data_OBDAP, data_RENDIS)
# Eliminate duplicated CUP
merged_data_unique <- merged_data %>% dplyr::distinct(dplyr::across(c(.data$CUP,.data$Finance)), .keep_all = TRUE)
#%>% dplyr::ungroup()
merged_data_unique <- merged_data_unique %>% dplyr::select(1,2,4:25,28:32,3, dplyr::everything())
return(merged_data_unique)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.