The goal of QTE.RD is to provide comprehensive tools for testing, estimating, and conducting uniform inference on quantile treatment effects (QTEs) in sharp regression discontinuity (RD) designs. When treatment effects vary across covariate-groups, QTE.RD facilitates the estimation, testing, and visualization of heterogeneous effects by incorporating covariates and applying the robust bias correction methods developed by Qu, Yoon, and Perron (2024, ).
The package is available on CRAN and can be loaded by
library(QTE.RD)
The following example demonstrates how to use the rd.qte
function from
the QTE.RD package, using data from Duflo, Dupas, and Kremer (2011,
AER). It estimates the quantile treatment effects of tracking on student
achievement.
data(ddk_2011)
yc <- ddk_2011$ts_std[ddk_2011$tracking==1]
xc <- ddk_2011$percentile[ddk_2011$tracking==1]
dc <- ddk_2011$highstream[ddk_2011$tracking==1]
A <- rd.qte(y=yc,x=xc,d=dc,x0=50,z0=NULL,tau=(1:9/10),bdw=20,bias=1)
summary(A,alpha=0.1)
#>
#>
#> QTE
#> ----------------------------------------------------------------------
#> Bias cor. Pointwise Uniform
#> Tau Est. Robust S.E. 90% Conf. Band
#> 0.1 -0.104 0.137 -0.430 0.221
#> 0.2 -0.001 0.146 -0.348 0.346
#> 0.3 -0.068 0.155 -0.437 0.302
#> 0.4 -0.074 0.158 -0.451 0.303
#> 0.5 -0.157 0.178 -0.581 0.267
#> 0.6 -0.069 0.216 -0.584 0.445
#> 0.7 -0.020 0.267 -0.655 0.616
#> 0.8 -0.023 0.310 -0.762 0.715
#> 0.9 -0.003 0.269 -0.644 0.639
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.