rdq.bias | R Documentation |
rdq.bias
estimates the bias terms using the local quadratic quantile regression.
rdq.bias(y, x, dz, x0, z0, taus, h.tau, h.tau2, fx, cov)
y |
a numeric vector, the outcome variable. |
x |
a vector (or a matrix) of covariates, the first column is the running variable. |
dz |
the number of covariates. |
x0 |
the cutoff point. |
z0 |
the value of the covariates at which to evaluate the effects. |
taus |
a vector of quantiles of interest. |
h.tau |
the bandwidth values (specified for each quantile level), for estimating conditional quantiles. |
h.tau2 |
the bandwidth values for the local quadratic quantile regression, for estimating the bias terms. |
fx |
conditional density estimates. |
cov |
either 0 or 1. Set |
A list with elements:
the bias estimates.
the estimate of the B_{v}(x,z,\tau)
term. See Qu, Yoon, and Perron (2024).
Zhongjun Qu, Jungmo Yoon, Pierre Perron (2024), "Inference on Conditional Quantile Processes in Partially Linear Models with Applications to the Impact of Unemployment Benefits," The Review of Economics and Statistics; \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1162/rest_a_01168")}
n = 500
x = runif(n,min=-4,max=4)
d = (x > 0)
y = x + 0.3*(x^2) - 0.1*(x^3) + 1.5*d + rnorm(n)
tlevel = seq(0.1,0.9,by=0.1)
tlevel2 = c(0.05,tlevel,0.95)
hh = rep(2,length(tlevel))
hh2 = rep(2,length(tlevel2))
ab = rdq(y=y,x=x,d=d,x0=0,z0=NULL,tau=tlevel2,h.tau=hh2,cov=0)
delta = c(0.05,0.09,0.14,0.17,0.19,0.17,0.14,0.09,0.05)
hh = rep(2,length(tlevel))
fe = rdq.condf(x,Q=ab$qp.est,bcoe=ab$bcoe.p,taus=tlevel,taul=tlevel2,delta=delta,cov=0)
be = rdq.bias(y[d==1],x[d==1],dz=0,x0=0,z0=NULL,taus=tlevel,hh,hh,fx=fe$ff[(d==1),],cov=0)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.