Fluorescence analysis report

dir.create(paste0(tempdir(),"/Plots"), showWarnings = F)
wd.plots <- paste0(wd,"/Plots")

if(parallelize){
  library(doParallel, quietly =  TRUE)
  library(foreach, quietly =  TRUE)
  cl <- parallel::makeCluster(parallel::detectCores(all.tests = FALSE, logical = TRUE)-1)
  doParallel::registerDoParallel(cl)
}

knitr::opts_chunk$set(dev = "pdf")
knitr::opts_chunk$set(tidy.opts=list(width.cutoff=80), tidy=TRUE)
knit_table <- function(df, caption){
  if (knitr::is_html_output()) {
    DT::datatable(df, caption = caption, filter = 'top', escape = FALSE,
         extensions = c('FixedColumns',"FixedHeader"),
          options = list(scrollX = FALSE, 
                         paging=TRUE,
                         pageLength = 15,
                         fixedHeader=TRUE))
  } else {
     colnames(df) <- colnames(df) %>% str_replace_all(.,"<br>", "\n") %>%  str_replace_all(., "_", "\\\\char`_") %>% str_replace_all(., "slope<sub>max</sub>", "$slope_{max}$") %>% str_replace_all(., "λ", "$\\\\lambda$") %>% str_replace_all(., "Δ", "$\\\\Delta$") %>% str_replace_all(., "x<sub>start</sub>", "$x_{start}$") %>% str_replace_all(., "x<sub>D</sub>", "$x_{D}$") %>% str_replace_all(., "x<sub>end</sub>", "$x_{end}$") %>% str_replace_all(., "R<sup>2</sup>", "$R^2$") %>% str_replace_all(., "α", "$\\\\alpha$") %>% str_replace_all(., "x<sub>shift</sub>", "$x_{shift}$") %>% str_replace_all(., "ν", "$\\\\nu$") %>% str_replace_all(., "y<sub>max</sub>", "y$_{max}$") %>% str_replace_all(., "x<sub>max</sub>", "x$_{max}$") 
     colnames(df) <- kableExtra::linebreak(colnames(df), align = "c")
     for(i in 2:ncol(df)){
       df[,i] <- df[,i] %>% str_replace_all(., "^<b>", "\\\\textbf\\{") %>% str_replace_all(., "</b>", "\\}") 
     }
     df[,1] <- str_replace_all(df[,1], "_", "\\\\char`_") %>% str_replace_all(., "%", "\\\\%") 
     df %>% knitr::kable("latex", align = "c", booktabs = T, escape = F, linesep = "",  caption = caption, longtable = TRUE) %>% kableExtra::kable_styling(latex_options = c("hold_position", "repeat_header", "striped"), full_width = F, position = "center", font_size = 8)
   }
}

Summary

The dataset contains r nrow(flFitRes[["time"]]) samples.\

r length(levels(data[["fluorescence"]][["condition"]])) conditions were identified:\ r colFmt(levels(data[["fluorescence"]][["condition"]]), 'NavyBlue')\

r length(levels(data[["fluorescence"]][["concentration"]])) different concentrations were identified:\ r colFmt(levels(data[["fluorescence"]][["concentration"]]), 'NavyBlue')\

The following parameters were used to fit the data:

\pagebreak

Graphical overview - Fluorescence

suppressWarnings(
  plot.dual(flFitRes, fluorescence = "fl", export = export, legend.position = "bottom", legend.ncol = 4)
)

Graphical overview - Normalized fluorescence

suppressWarnings(
  plot.dual(flFitRes, fluorescence = "norm.fl", export = export, legend.position = "bottom", legend.ncol = 4)
)

r if((length(flFitRes$data$density)>1 && length(flFitRes$data$fluorescence)>1) || (length(flFitRes$data$density)>1 && length(flFitRes$data$norm.fluorescence)>1) || (length(flFitRes$data$density)>1 && length(flFitRes$data$norm.fluorescence2)>1)){"\\pagebreak"}

Fluorescence fit results

Grouped results

if(any(c("l") %in% control$fit.opt)){
  if(!all(is.na(res.table.fl$lambda.linfit))){
    table_linear_group <- table_group_fluorescence_linear(res.table.fl)
    table_linear_group <- as.data.frame(apply(table_linear_group, 2, function(x) str_replace_all(x, "NA ± NA", "")))
    table_linear_group[is.na(table_linear_group)] <- ""
    if (knitr::is_html_output()) {
      knit_table(table_linear_group, caption = ifelse(control$biphasic, "Linear Fit (Values in parentheses indicate parameters for secondary growth phase)", "Linear Fit"))
    } else {
      knit_table(table_linear_group, caption = ifelse(control$biphasic, "Linear Fit (Values in parentheses indicate parameters for secondary growth phase)", "Linear Fit")) %>% kableExtra::column_spec(column=1, width = "4cm")
    }
  }
}
try(suppressWarnings(
  plot.parameter(flFitRes, param = "max_slope.linfit", export = export, out.dir = normalizePath(wd.plots)))
)
try(suppressWarnings(
  plot.parameter(flFitRes, param = "lambda.linfit", export = export, out.dir = normalizePath(wd.plots)))
)
try(suppressWarnings(
  plot.parameter(flFitRes, param = "dY.linfit", export = export, out.dir = normalizePath(wd.plots)))
)

r if(any(c("l") %in% control$fit.opt)){"\\clearpage"}

if(any(c("s") %in% control$fit.opt)){
  if(!all(is.na(res.table.fl$lambda.spline))){
        table_spline_group <- table_group_fluorescence_spline(res.table.fl)

    # if ( control$nboot.gc > 1 ){
    #   table_spline <- cbind(table_spline, data.frame("slope<sub>max</sub><br>boot" = paste(round(as.numeric(res.table.fl$max_slope.bt), 3),"\u00B1", round(as.numeric(res.table.fl$stdmax_slope.bt),3)), 
    #                                                "λ<br>boot" = paste(round(as.numeric(res.table.fl$lambda.bt), 2),"\u00B1", round(as.numeric(res.table.fl$stdlambda.bt),2)),
    #                                                "A<br>boot" = paste(round(as.numeric(res.table.fl$A.bt), 3),"\u00B1", round(as.numeric(res.table.fl$stdA.bt),3)),
    #                                                stringsAsFactors = F, check.names = F))
    # }
  table_spline_group <- as.data.frame(apply(table_spline_group, 2, function(x) str_replace_all(x, "NA ± NA", "")))
  table_spline_group[is.na(table_spline_group)] <- ""
  if (knitr::is_html_output()) {
      knit_table(table_spline_group, caption = ifelse(control$biphasic, "Smooth Spline Fit (Values in parentheses indicate parameters for secondary growth phase)", "Smooth Spline Fit"))
    } else {
      knit_table(table_spline_group, caption = ifelse(control$biphasic, "Smooth Spline Fit (Values in parentheses indicate parameters for secondary growth phase)", "Smooth Spline Fit")) %>% kableExtra::column_spec(column=1, width = "4cm")
    }
  }
}
try(suppressWarnings(
  plot.parameter(flFitRes, param = "max_slope.spline", export = export, out.dir = normalizePath(wd.plots)))
)
try(suppressWarnings(
  plot.parameter(flFitRes, param = "lambda.spline", export = export, out.dir = normalizePath(wd.plots)))
)
try(suppressWarnings(
  plot.parameter(flFitRes, param = "dY.spline", export = export, out.dir = normalizePath(wd.plots)))
)

\clearpage

Individual samples

if(any(c("l") %in% control$fit.opt)){
  if(!all(is.na(res.table.fl$lambda.linfit))){
    table_linear <- data.frame("Sample|Replicate|Conc." = paste(res.table.fl$TestId, res.table.fl$AddId, res.table.fl$concentration, sep = "|"),

                               "slope<sub>max</sub>" = ifelse(res.table.fl$max_slope.linfit==0 | is.na(res.table.fl$max_slope.linfit), "", ifelse(is.na(res.table.fl$max_slope2.linfit), round(as.numeric(res.table.fl$max_slope.linfit), 3), paste0("<b>", round(as.numeric(res.table.fl$max_slope.linfit), 3), "</b>", " (", round(as.numeric(res.table.fl$max_slope2.linfit), 3), ")"))),

                               "λ" = round(as.numeric(res.table.fl$lambda.linfit), 2), 


                               "Δy" = round(as.numeric(res.table.fl$dY.linfit), 3),


                               "y<sub>max</sub>" = round(as.numeric(res.table.fl$A.linfit), 3),


                               "x<sub>start</sub><br>(slope<sub>max</sub>)" = ifelse(is.na(res.table.fl$max_slope2.linfit), round(as.numeric(res.table.fl$x.mu.start.linfit), 2), paste0("<b>", round(as.numeric(res.table.fl$x.mu.start.linfit), 2), "</b>", " (", round(as.numeric(res.table.fl$x.mu2.start.linfit), 2), ")")),


                               "x<sub>end</sub><br>(slope<sub>max</sub>)" = ifelse(is.na(res.table.fl$max_slope2.linfit), round(as.numeric(res.table.fl$x.mu.end.linfit), 2), paste0("<b>", round(as.numeric(res.table.fl$x.mu.end.linfit), 2), "</b>", " (", round(as.numeric(res.table.fl$x.mu2.end.linfit), 2), ")")),



                               "R<sup>2</sup><br>(linear fit)" = ifelse(is.na(res.table.fl$max_slope2.linfit), round(as.numeric(res.table.fl$r2mu.linfit), 3), paste0("<b>", round(as.numeric(res.table.fl$r2mu.linfit), 3), "</b>", " (", round(as.numeric(res.table.fl$r2mu2.linfit), 3), ")")),


                               stringsAsFactors = F, check.names = F)
    table_linear <- as.data.frame(apply(table_linear, 2, function(x) str_replace_all(x, "NA ± NA", "")))
    table_linear[is.na(table_linear)] <- ""
    if (knitr::is_html_output()) {
      knit_table(table_linear, caption = ifelse(control$biphasic, "Linear Fit (Values in parentheses indicate parameters for secondary growth phase)", "Linear Fit"))
    } else {
      knit_table(table_linear, caption = ifelse(control$biphasic, "Linear Fit (Values in parentheses indicate parameters for secondary growth phase)", "Linear Fit")) %>% kableExtra::column_spec(column=1, width = "4cm")
    }
  }
}

r if(any(c("l") %in% control$fit.opt)){"\\clearpage"}

if(any(c("s") %in% control$fit.opt)){
  if(!all(is.na(res.table.fl$lambda.spline))){
    table_spline <- data.frame("Sample|Replicate|Conc." = paste(res.table.fl$TestId, res.table.fl$AddId, res.table.fl$concentration, sep = "|"),

                             "slope<sub>max</sub>" = ifelse(res.table.fl$max_slope.spline==0 | is.na(res.table.fl$max_slope.spline), "", ifelse(is.na(res.table.fl$max_slope2.spline), round(as.numeric(res.table.fl$max_slope.spline), 3), paste0("<b>", round(as.numeric(res.table.fl$max_slope.spline), 3), "</b>", " (", round(as.numeric(res.table.fl$max_slope2.spline), 3), ")"))),

                             "λ" = round(as.numeric(res.table.fl$lambda.spline), 2), 

                             "y<sub>max</sub>" = round(as.numeric(res.table.fl$A.spline), 3),

                             "Δy" = round(as.numeric(res.table.fl$dY.spline), 3),

                             "x<sub>max</sub>" = ifelse(is.na(res.table.fl$max_slope2.spline), round(as.numeric(res.table.fl$x.max.spline), 2), paste0("<b>", round(as.numeric(res.table.fl$x.max.spline), 2), "</b>", " (", round(as.numeric(res.table.fl$x.max2.spline), 2), ")")),

                             "smooth.<br>fac" = res.table.fl$smooth.spline,

                             stringsAsFactors = F, check.names = F)
    # if ( control$nboot.gc > 1 ){
    #   table_spline <- cbind(table_spline, data.frame("slope<sub>max</sub><br>boot" = paste(round(as.numeric(res.table.fl$max_slope.bt), 3),"\u00B1", round(as.numeric(res.table.fl$stdmax_slope.bt),3)), 
    #                                                "λ<br>boot" = paste(round(as.numeric(res.table.fl$lambda.bt), 2),"\u00B1", round(as.numeric(res.table.fl$stdlambda.bt),2)),
    #                                                "A<br>boot" = paste(round(as.numeric(res.table.fl$A.bt), 3),"\u00B1", round(as.numeric(res.table.fl$stdA.bt),3)),
    #                                                stringsAsFactors = F, check.names = F))
    # }
  table_spline <- as.data.frame(apply(table_spline, 2, function(x) str_replace_all(x, "NA ± NA", "")))
  table_spline[is.na(table_spline)] <- ""
  if (knitr::is_html_output()) {
      knit_table(table_spline, caption = ifelse(control$biphasic, "Smooth Spline Fit (Values in parentheses indicate parameters for secondary growth phase)", "Smooth Spline Fit"))
    } else {
      knit_table(table_spline, caption = ifelse(control$biphasic, "Smooth Spline Fit (Values in parentheses indicate parameters for secondary growth phase)", "Smooth Spline Fit")) %>% kableExtra::column_spec(column=1, width = "4cm")
    }
  }
}

\clearpage

Plots

r if(any(c("l") %in% control$fit.opt)){"Linear Fits"}

if(any(c("l") %in% control$fit.opt)){
  plot.flFitLinear2 <- function(flFittedLinear, log="", which=c("fit", "diagnostics"), title = "Linear fit",
                             plot = TRUE, export = FALSE, height = ifelse(which=="fit", 7, 5),
                             width = ifelse(which=="fit", 9, 9), out.dir = NULL, ...)
  {
  if(is(flFittedLinear) != "flFitLinear") stop("flFitLinear needs to be an object created with flFitLinear().")
  which <- match.arg(which)

  p <- function(){
    switch(which,
           fit = {
             control <- flFittedLinear$control
             if(control$x_type == "time"){
               if(control$norm_fl){
                 if(control$log.y.lin){
                   ylab = "norm. Ln[FL/FL(0)]"
                 } else {
                   ylab = "norm. FL"
                 }
               } else {
                 if(control$log.y.lin){
                   ylab = "Ln[FL/FL(0)]"
                 } else {
                   ylab = "Fluorescence"
                 }
               }
             } else {
               if(control$log.y.lin){
                 ylab = "Ln[FL/FL(0)]"
               } else {
                 ylab = "Fluorescence"
               }
             }
             if(control$x_type == "time"){
               if(control$log.x.lin){
                 xlab <- "Ln(time + 1)"
               } else {
                 xlab <- "Time"
               }
             } else {
               if(control$log.x.lin){
                 xlab <- "Ln(density + 1)"
               } else {
                 xlab <- "Density"
               }
             }
             par(mar=c(5.1, 4.1 + nchar(round(max(flFittedLinear$"filt.fl")))/3.5, 4.1, 2.1), cex.lab=1.5)
             plot(flFittedLinear$"filt.fl" ~ flFittedLinear$"filt.x", xlab=xlab, ylab = "", col = scales::alpha("black", 0.5),
                  log=log, las=1, main = title, yaxt="n", xaxt="n", ...)
             title(ylab = ylab, line = 3 + nchar(round(max(flFittedLinear$"filt.fl")))/4)
             axis(1,cex.axis=1.3)
             axis(2,cex.axis=1.3, las=1)
             try(points(flFittedLinear$filt.fl[flFittedLinear$ndx] ~ flFittedLinear$filt.x[flFittedLinear$ndx], pch=21, col="black", bg="red"))

             ## lag phase
             lag <- flFittedLinear$par["lag"]
             coef_ <- flFittedLinear$par


             if(flFittedLinear$fitFlag2){
               try(points(flFittedLinear$raw.fl[flFittedLinear$ndx2] ~ flFittedLinear$raw.x[flFittedLinear$ndx2], pch=21, col="black", bg=ggplot2::alpha("magenta3", 1)))
               lag2 <- flFittedLinear$par["lag2"]
               if(lag2 < lag && lag2 > flFittedLinear$raw.x[1]){
                 try(time2 <- seq(lag2, max(flFittedLinear$"raw.x"), length=200), silent = T)
                 try(time <- seq(coef_["x.max_start"]-0.25*(coef_["x.max_end"]-coef_["x.max_start"]), max(flFittedLinear$"raw.x"), length=200), silent = T)
                 try(lines(time2, grow_linear(time2, c(y0=unname(coef_["y0_lm2"]), max_slope=unname(coef_["max_slope2"])))[,"y"], lty=2, lwd=2, col=ggplot2::alpha("magenta3", 0.7), ...), silent = T)
                 try(lines(c(min(flFittedLinear$"filt.x"[1]), lag2), rep(flFittedLinear$"filt.fl"[1], 2), lty=2, lwd=2, col=ggplot2::alpha("magenta3", 0.7)), silent = T)
                 try(lines(time, grow_linear(time, c(y0=unname(coef_["y0_lm"]), max_slope=unname(coef_["max_slope"])))[,"y"], lty=2, lwd=2, col=ggplot2::alpha("firebrick3", 0.7), ...), silent = T)
               } else {
                 try(time2 <- seq(coef_["x.max2_start"]-0.25*(coef_["x.max2_end"]-coef_["x.max2_start"]), max(flFittedLinear$"raw.x"), length=200), silent = T)
                 try(time <- seq(coef_["x.max_start"]-0.25*(coef_["x.max_end"]-coef_["x.max_start"]), max(flFittedLinear$"raw.x"), length=200), silent = T)
                 try(lines(time, grow_linear(time, c(y0=unname(coef_["y0_lm"]), max_slope=unname(coef_["max_slope"])))[,"y"], lty=2, lwd=2, col=ggplot2::alpha("firebrick3", 0.7), ...), silent = T)
                 try(lines(time2, grow_linear(time2, c(y0=unname(coef_["y0_lm2"]), max_slope=unname(coef_["max_slope2"])))[,"y"], lty=2, lwd=2, col=ggplot2::alpha("magenta3", 0.7), ...), silent = T)

               }
             } else if(flFittedLinear$fitFlag){
               if(lag < flFittedLinear$raw.x[flFittedLinear$ndx[1]]){
                 try(time <- seq(coef_["x.max_start"]-0.25*(coef_["x.max_end"]-coef_["x.max_start"]), max(flFittedLinear$"filt.x"), length=200), silent = T)
                 try(lines(time, grow_linear(time, coef_)[,"y"], lty=2, lwd=2, col=ggplot2::alpha("firebrick3", 0.7), ...), silent = T)
               } else {
                 try(time <- seq(flFittedLinear$filt.x[flFittedLinear$ndx[1]]/2, max(flFittedLinear$"filt.x"), length=200), silent = T)
                 try(lines(time, grow_linear(time, coef_)[,"y"], lty=2, lwd=2, col=ggplot2::alpha("firebrick3", 0.7), ...), silent = T)
               }
             }
           },
           diagnostics = {
             opar <- par(no.readonly = TRUE)
             on.exit(par(opar))
             par(mfrow=c(1,2))

             ## residuals vs. fitted
             obs <- flFittedLinear$log.data
             sim <- grow_linear(flFittedLinear$"raw.x", flFittedLinear$par)
             plot(flFittedLinear$fit[["residuals"]] ~ fitted(flFittedLinear$fit), xlab="fitted", ylab="residuals")
             abline(h=0, col="grey")
             ## normal q-q-plot
             qqnorm(flFittedLinear$fit[["residuals"]])
             qqline(flFittedLinear$fit[["residuals"]])
           }
    )
  }
  if (export == TRUE){
    w <- width
    h <- height
    out.dir <- ifelse(is.null(out.dir), paste0(getwd(), "/Plots"), out.dir)
    dir.create(out.dir, showWarnings = F)
    grDevices::png(paste0(out.dir, "/", paste(flFittedLinear$gcID, collapse = "_"), "_LinFitPlot.png"),
                   width = w, height = h, units = 'in', res = 300)
    p()
    invisible(grDevices::dev.off())
    suppressWarnings(grDevices::pdf(paste0(out.dir, "/", paste(flFittedLinear$gcID, collapse = "_"), "_LinFitPlot.pdf")))
    p()
    invisible(grDevices::dev.off())
  }
  if (plot == TRUE){
    suppressWarnings(
      p()
    )
  }
}

  plot.ggLinear <- function(){
    if(flFitRes[["flFit"]][["flFittedLinear"]][[i]][["fitFlag"]] == TRUE){
      x <- flFitRes[["flFit"]][["flFittedLinear"]][[i]]
      plot.flFitLinear2(flFittedLinear = x, title = gsub(" \\| NA", "", paste(x$ID, collapse = " | ")))
    }
  }
  plotdir <- ifelse(export == TRUE, wd.plots, paste0(str_replace_all(tempdir(), "\\\\", "/"),"/Plots"))
  if(all(c('pdf', 'html') %in% format)){
    if (knitr::is_latex_output()) {
      # foreach(i = 1:length(flFitRes[["flFit"]][["flFittedLinear"]]),
      #         .packages = "ggplot2") %dopar% {
      #           if(flFitRes[["flFit"]][["flFittedLinear"]][[i]][["fitFlag"]] == TRUE){
      #             pdf(file=paste0(plotdir, "/PlotLinear_", gsub("∙", "_", gsub("\\?", "_", gsub(" ", "_", gsub("\\/", "-", gsub(" \\| ", "_", names(flFitRes[["flFit"]][["flFittedLinear"]])[i]))))), ".pdf"), width = 8, height = 6);   plot.ggLinear();   invisible(dev.off())
      #           }
      #         }
      for(i in 1:length(flFitRes[["flFit"]][["flFittedLinear"]])){
        if(length(grep("^NA ", names(flFitRes[["flFit"]][["flFittedLinear"]])[i]))>0 && flFitRes[["flFit"]][["flFittedLinear"]][[i]][["fitFlag"]] == TRUE){
                  suppressWarnings(pdf(file=paste0(plotdir, "/PlotLinear_", gsub("∙", "_", gsub("\\?", "_", gsub(" ", "_", gsub("\\/", "-", gsub(" \\| ", "_", names(flFitRes[["flFit"]][["flFittedLinear"]])[i]))))), ".pdf"), width = 8, height = 6))
          plot.ggLinear()
          invisible(grDevices::dev.off())
                 }
      }
    }
  } else{
    # foreach(i = 1:length(flFitRes[["flFit"]][["flFittedLinear"]]),
    #         .packages = "ggplot2") %dopar% {
    #           if(flFitRes[["flFit"]][["flFittedLinear"]][[i]][["fitFlag"]] == TRUE){
    #             pdf(file=paste0(plotdir, "/PlotLinear_", gsub("∙", "_", gsub("%", "_", gsub("\\?", "_", gsub(" ", "_", gsub("\\/", "-", gsub(" \\| ", "_", names(flFitRes[["flFit"]][["flFittedLinear"]])[i])))))), ".pdf"), width = 8, height = 6);   plot.ggLinear();   invisible(dev.off())
    #           }
    #         }
    for(i in 1:length(flFitRes[["flFit"]][["flFittedLinear"]])){
        if(length(grep("^NA ", names(flFitRes[["flFit"]][["flFittedLinear"]])[i]))==0 && flFitRes[["flFit"]][["flFittedLinear"]][[i]][["fitFlag"]] == TRUE){
                  suppressWarnings(pdf(file=paste0(plotdir, "/PlotLinear_", gsub("∙|>|<|\\(|\\)", "_", gsub("\\?", "_", gsub(" ", "_", gsub("\\/", "-", gsub(" \\| ", "_", names(flFitRes[["flFit"]][["flFittedLinear"]])[i]))))), ".pdf"), width = 8, height = 6))
          plot.ggLinear()
          invisible(grDevices::dev.off())
                 }
      }
  } 

  Files_list <- list.files(path = plotdir, 
                           pattern = "^PlotLinear_",
                           full.names = TRUE)
  sort.ndx <- match(gsub("∙|>|<|\\(|\\)", "_", gsub("%", "_", gsub("\\?", "_", gsub(" ", "_", gsub("\\/", "-", gsub(" \\| ", "_", names(flFitRes$flFit$flFittedLinear))))))), gsub(".+PlotLinear_","", gsub(".pdf", "", Files_list)))
  sort.ndx <- sort.ndx[!is.na(sort.ndx)]

  knitr::include_graphics(Files_list[sort.ndx], dpi = 300, error = F)
}

r if(any(c("s") %in% control$fit.opt)){"\\clearpage"}

r if(any(c("s") %in% control$fit.opt)){"Nonparametric Fits"}

if(any(c("s") %in% control$fit.opt)) {
  plot.flFitSpline2 <- function(flFitSpline, add=FALSE, raw = TRUE, slope=TRUE, deriv = T, spline = T, log.y = F,
                                pch=1, colData=1, colSpline="dodgerblue3", cex=1, lwd = 0.7,
                                plot = TRUE, export = FALSE, width = 8, height = ifelse(deriv == TRUE, 8, 6),
                                out.dir = NULL, ...)
  {
    if(is(flFitSpline) != "flFitSpline") stop("flFitSpline needs to be an object created with flFitSpline().")
    # /// check input parameters
    if (is.logical(add)==FALSE)   stop("Need logical value for: add")
    if (is.logical(slope)==FALSE) stop("Need logical value for: slope")
    if (is.numeric(pch)==FALSE)   stop("Need numeric value for: pch")
    if (is.numeric(cex)==FALSE)   stop("Need numeric value for: cex")

    # /// check if a data fit is available
    if ((is.na(flFitSpline$fitFlag)==TRUE)|(flFitSpline$fitFlag==FALSE)){
      warning("plot.flFitSpline: no data fit available!")
    }
    else{
      if (add==TRUE){
        if(spline == TRUE){
          # /// try to plot data fit
          if ((flFitSpline$control$log.x.spline==FALSE) && (flFitSpline$control$log.y.spline==FALSE)){
            try( lines(flFitSpline$fit.x, flFitSpline$fit.fl, sub=flFitSpline$name.fit, col=colSpline, type="l", lwd=2.8*lwd) )
          }

          if ((flFitSpline$control$log.x.spline==FALSE) && (flFitSpline$control$log.y.spline==TRUE)){
            try( lines(flFitSpline$fit.x, flFitSpline$fit.fl, sub=flFitSpline$name.fit, col=colSpline, type="l", lwd=2.8*lwd) )
          }

          if ((flFitSpline$control$log.x.spline==TRUE)  && (flFitSpline$control$log.y.spline==FALSE)){
            try( lines(flFitSpline$fit.x, flFitSpline$fit.fl, sub=flFitSpline$name.fit, col=colSpline, type="l", lwd=2.8*lwd ) )
          }

          if ((flFitSpline$control$log.x.spline==TRUE)  && (flFitSpline$control$log.y.spline==TRUE)){
            try( lines(flFitSpline$fit.x, flFitSpline$fit.fl, sub=flFitSpline$name.fit, col=colSpline, type="l", lwd=2.8*lwd) )
          }
          # /// add tangent at maximum slope
          if (slope==TRUE){
            mu     <- as.numeric(flFitSpline$parameters$max_slope)
            lambda <- as.numeric(flFitSpline$parameters$lambda)

            x <- seq(lambda, max(flFitSpline$"fit.x"), length=200)
            y_tangent <- flFitSpline$parameters["b.tangent"][[1]]+x*mu
            try(lines(x, y_tangent, lty=2, lwd=2, col=ggplot2::alpha(colSpline, 0.85), ...))
            try(lines(c(min(flFitSpline$"raw.x"[1]), lambda), rep(flFitSpline$"raw.fl"[1], 2), lty=2, lwd=2,   
                      col=ggplot2::alpha(colSpline, 0.7)))
          }
        }
        if (deriv  == TRUE){
          if ((flFitSpline$control$log.x.spline==FALSE)){
            try( lines(flFitSpline$spline.deriv1$x, flFitSpline$spline.deriv1$y, xlab="", ylab="", col = colSpline) )
          }
          if ((flFitSpline$control$log.x.spline==TRUE)){
            try( lines(flFitSpline$spline.deriv1$x, flFitSpline$spline.deriv1$y, xlab="", ylab="", col = colSpline) )
          }
        }
      } # if (add == TRUE)
      else {
        coef <- flFitSpline[["parameters"]]
        lag <- coef["lambda"][[1]][1]
        # correct for log transformation
        if(flFitSpline$control$log.y.spline == TRUE){
          fit.fl <-
            c(rep(NA, length(flFitSpline[["raw.fl"]]) - length(flFitSpline[["fit.fl"]])), exp(flFitSpline[["fit.fl"]]) *
                flFitSpline[["raw.fl"]][1])
        } else {
          fit.fl <- c(rep(NA, length(flFitSpline[["raw.fl"]]) - length(flFitSpline[["fit.fl"]])), flFitSpline[["fit.fl"]])
        }

        df.raw <- data.frame("x" = flFitSpline[["x.in"]],
                             "data" = flFitSpline[["fl.in"]])
        df.fit <- data.frame("fit.x" = c(rep(NA, length(flFitSpline[["raw.x"]])-length(flFitSpline[["fit.x"]])), flFitSpline[["fit.x"]]),
                             "fit.fl" = fit.fl)

        x.label = if(flFitSpline$control$x_type == "density"){
          "Density"
        } else {
          "Time"
        }
        y.label <- if(flFitSpline$control$norm_fl == TRUE && flFitSpline$control$x_type == "time"){
          "Norm. fluorescence"
        } else {
          "Fluorescence"
        }
        p <- ggplot(NULL, aes(x=x, y=data)) +
          geom_line(aes(x=fit.x, y = fit.fl, color = "spline"), data = df.fit, size = lwd) +
          xlab(x.label) +
          ylab(label = y.label) +
          theme_classic(base_size = 16) +
          ggtitle(gsub(" \\| NA", "", paste(flFitSpline$ID, collapse=" | "))) +
          scale_x_continuous(breaks = scales::pretty_breaks(n = 10)) +
          theme(legend.key = element_blank(),
                legend.background=element_blank(),
                legend.title = element_blank(),
                legend.position = c(0.90, 0.08),
                plot.title = element_text(size=15),
                panel.grid.major = element_blank(),
                panel.grid.minor = element_blank()) +
          scale_color_manual(name='Growth Model',
                             breaks = "Spline fit",
                             values=c("spline" = ggplot2::alpha(colSpline, 0.85), "Spline fit" = ggplot2::alpha(colSpline, 0.85)))
        if(raw){
          p <- p + geom_point(data = df.raw, shape=1, size = 2,alpha = 0.6, stroke=0.15)
        }


        p.yrange.end <- ggplot_build(p)$layout$panel_params[[1]]$y.range[2]

        if(log.y == TRUE){
          p <- p + scale_y_continuous(breaks = scales::pretty_breaks(), trans = 'log')
        } else {
          p <- p + scale_y_continuous(breaks = scales::pretty_breaks())
        }


        # /// add tangent at maximum slope
        if(slope == TRUE && (flFitSpline$control$log.y.spline==F && log.y == F) ||
           (flFitSpline$control$log.y.spline==T && log.y == T)){
          mu     <- as.numeric(coef$max_slope[1])
          if(flFitSpline$fitFlag2){
            lag2 <- coef$lambda2
            fl.x <- flFitSpline$fit.x[which.max(flFitSpline$fit.fl)]
            mu2 <- coef$max_slope2
            if(lag2 < lag){
              # x values for tangent at µmax
              x_start.ndx <- which.min(abs(flFitSpline$fit.x-(coef$x.max-0.15*fl.x)))
              x_start <- flFitSpline$fit.x[x_start.ndx]
              x <- seq(x_start, max(flFitSpline$fit.x), length=200)
              # y values for tangent at µmax
              if(flFitSpline$control$log.y.spline){
                bla <- (exp(coef["b.tangent"][[1]])*flFitSpline[["raw.fl"]][1])*exp(mu*x)
              } else {
                bla <- coef["b.tangent"][[1]] + (mu*x)
              }
              tangent.df <- data.frame("x" = x,
                                       "y" = bla)
              # x values for tangent at µmax2
              x2 <- seq(ifelse(lag2<0, 0, lag2), max(flFitSpline$"fit.x"), length=200)
              # y values for tangent at µmax
              if(flFitSpline$control$log.y.spline){
                bla2 <- (exp(coef["b.tangent2"][[1]])*flFitSpline[["raw.fl"]][1])*exp(mu2*x2)
              } else {
                bla2 <- coef["b.tangent2"][[1]] + (mu2*x2)
              }
              tangent.df2 <- data.frame("x" = x2,
                                        "y" = bla2)
              df.horizontal2 <- data.frame("x" = c(flFitSpline[["raw.x"]][1], lag2),
                                           "y" = flFitSpline[["raw.fl"]][1])

              p <- p + geom_segment(aes(x = x[which.min(abs(bla))], y = y[which.min(abs(bla))],
                                        xend = x[which.min(abs(y - 1.1*p.yrange.end))],
                                        yend = y[which.min(abs(y - 1.1*p.yrange.end))]),
                                    data = tangent.df, linetype = "dashed", color = ggplot2::alpha(colSpline, 0.85), size = 0.5)
              p <- p + geom_segment(aes(x = x[which.min(abs(bla2))], y = y[which.min(abs(bla2))],
                                        xend = x[which.min(abs(y - 1.1*p.yrange.end))],
                                        yend = y[which.min(abs(y - 1.1*p.yrange.end))]),
                                    data = tangent.df2, linetype = "dashed", color = ggplot2::alpha("darkviolet", 0.85), size = 0.5)

              if(!(lag2 <0)){
                p <- p + geom_segment(aes(x = x[1], y = y[1], xend = x[2], yend = y[2]), data = df.horizontal2,
                                      linetype = "dashed", color = ggplot2::alpha("darkviolet", 0.85), size = 0.5)
              }
            } # if(lag2 < lag)
            else {
              # x values for tangent at µmax
              x <- seq(ifelse(lag<0, 0, lag), max(flFitSpline$"fit.x"), length=200)
              # y values for tangent at µmax
              if(flFitSpline$control$log.y.spline){
                bla <- (exp(coef["b.tangent"][[1]])*flFitSpline[["raw.fl"]][1])*exp(mu*x)
              } else {
                bla <- coef["b.tangent"][[1]] + (mu*x)
              }
              tangent.df <- data.frame("x" = x,
                                       "y" = bla)
              df.horizontal <- data.frame("x" = c(flFitSpline[["raw.x"]][1], lag),
                                          "y" = flFitSpline[["raw.fl"]][1])
              # x values for tangent at µmax2
              x2_start.ndx <- which.min(abs(flFitSpline$fit.x-(coef$x.max2-0.15*fl.x)))
              x2_start <- flFitSpline$fit.x[x2_start.ndx]
              x2 <- seq(x2_start, max(flFitSpline$"fit.x"), length=200)
              # y values for tangent at µmax
              if(flFitSpline$control$log.y.spline){
                bla2 <- (exp(coef["b.tangent2"][[1]])*flFitSpline[["raw.fl"]][1])*exp(mu2*x2)
              } else {
                bla2 <- coef["b.tangent2"][[1]] + (mu2*x2)
              }
              tangent.df2 <- data.frame("x" = x2,
                                        "y" = bla2)

              p <- p + geom_segment(aes(x = x[which.min(abs(bla))], y = y[which.min(abs(bla))],
                                        xend = x[which.min(abs(y - 1.1*p.yrange.end))],
                                        yend = y[which.min(abs(y - 1.1*p.yrange.end))]),
                                    data = tangent.df, linetype = "dashed", color = ggplot2::alpha(colSpline, 0.85), size = 0.5)
              p <- p + geom_segment(aes(x = x[which.min(abs(bla2))], y = y[which.min(abs(bla2))],
                                        xend = x[which.min(abs(y - 1.1*p.yrange.end))],
                                        yend = y[which.min(abs(y - 1.1*p.yrange.end))]),
                                    data = tangent.df2, linetype = "dashed", color = ggplot2::alpha("darkviolet", 0.85), size = 0.5)

              # if(!(lag <0)){
              #   p <- p + geom_segment(aes(x = x[1], y = y[1], xend = x[2], yend = y[2]), data = df.horizontal,
              #                         linetype = "dashed", color = ggplot2::alpha(colSpline, 0.85), size = 0.5)
              # }
            }
          } # if(flFitSpline$fitFlag2)
          else {
            # x values for tangent
            x <- seq(ifelse(lag<0, 0, lag), max(flFitSpline$"fit.x"), length=200)
            # y values for tangent
            if(flFitSpline$control$log.y.spline){
              bla <- (exp(coef["b.tangent"][[1]])*flFitSpline[["raw.fl"]][1])*exp(mu*x)
            } else {
              bla <- coef["b.tangent"][[1]] + (mu*x)
            }
            tangent.df <- data.frame("x" = x,
                                     "y" = bla)
            df.horizontal <- data.frame("x" = c(flFitSpline[["raw.x"]][1], lag),
                                        "y" = flFitSpline[["raw.fl"]][1])
            p <- p + geom_segment(aes(x = x[which.min(abs(bla))], y = y[which.min(abs(bla))],
                                      xend = x[which.min(abs(y - 1.1*p.yrange.end))],
                                      yend = y[which.min(abs(y - 1.1*p.yrange.end))]),
                                  data = tangent.df, linetype = "dashed", color = ggplot2::alpha(colSpline, 0.85), size = 0.5)
            # if(!(lag <0)){
            #   p <- p + geom_segment(aes(x = x[1], y = y[1], xend = x[2], yend = y[2]), data = df.horizontal,
            #                         linetype = "dashed", color = ggplot2::alpha(colSpline, 0.85), size = 0.5)
            # }
          } # else of if(flFitSpline$fitFlag2)
        } # if(slope == TRUE && log.y == T)

        # /// add panel with growth rate over x
        if(deriv == TRUE){
          df.mu <- data.frame(spline(flFitSpline$spline.deriv1$x, flFitSpline$spline.deriv1$y))
          #add missing x values due to min.density and t0
          x.missing <- df.raw[df.raw$x < df.mu$x[1], ]$x
          df.mu <-
            dplyr::bind_rows(data.frame(x = x.missing, y = rep(NA, length(x.missing))),
                             df.mu)

          y.label.mu = if(flFitSpline$control$log.y.spline == TRUE){
            paste0("Slope [d(Ln(F/F0))/d",x.label, "]")
          } else {
            paste0("Slope [dF/d", x.label,"]")
          }
          p.mu <- ggplot(df.mu, aes(x=x, y=y)) +
            geom_line(color = colSpline, size = lwd) +
            theme_classic(base_size = 15) +
            xlab(x.label) +
            ylab(label = y.label.mu) +
            scale_x_continuous(breaks = scales::pretty_breaks(n = 10)) +
            scale_y_continuous(breaks = scales::pretty_breaks(n = 10))

          p <- suppressWarnings(ggpubr::ggarrange(p, p.mu, ncol = 1, nrow = 2, align = "v", heights = c(2,1.1)))

        }

        if(export == FALSE && plot == FALSE){
          return(p)
        }
        if (export == TRUE){
          w <- width
          h <- height
          out.dir <- ifelse(is.null(out.dir), paste0(getwd(), "/Plots"), out.dir)
          dir.create(out.dir, showWarnings = F)
          grDevices::png(paste0(out.dir, "/", paste(flFitSpline$ID, collapse = "_"), "_SplineFit.png"),
                         width = w, height = h, units = 'in', res = 300)
          print(p)
          invisible(grDevices::dev.off())
          suppressWarnings(grDevices::pdf(paste0(out.dir, "/", paste(flFitSpline$ID, collapse = "_"), "_SplineFit.pdf"), width = w, height = h))
          print(p)
          suppressWarnings(invisible(grDevices::dev.off()))
        }
        if (plot == TRUE){

          print(p)

        }
      } # else of if (add == TRUE)
    } # else of if ((is.na(flFitSpline$fitFlag)==TRUE)|(flFitSpline$fitFlag==FALSE))
  }
  #__________________ end function definition ______________
  plotdir <- ifelse(export == TRUE, wd.plots, paste0(str_replace_all(tempdir(), "\\\\", "/"), "/Plots"))

  plot.ggSpline   <- function() {
    tryCatch({
      if (flFitRes[["flFit"]][["flFittedSplines"]][[i]][["fitFlag"]] == TRUE) {
        pdf_filename <- paste0(plotdir, "/PlotSpline_", gsub("∙|\\n|\\r", "_", gsub("%", "_", gsub("\\?", "_", gsub(" ", "_",
                                gsub("\\/", "_", gsub(" \\| ", "_", names(flFitRes[["flFit"]][["flFittedSplines"]])[i])))))), ".pdf")
        pdf(file = pdf_filename)
        plot.flFitSpline2(x)
      }
    }, finally = {
      invisible(grDevices::dev.off()) # Ensure the device is closed
    })
  }
  if(all(c('pdf', 'html') %in% format)){
    if (knitr::is_latex_output()) {
      if(parallelize){
        foreach(i = 1:length(flFitRes[["flFit"]][["flFittedSplines"]]),
                .packages = "ggplot2") %dopar% {
                  if (length(grep("^NA ", names(flFitRes[["flFit"]][["flFittedSplines"]])[i]))==0 && flFitRes[["flFit"]][["flFittedSplines"]][[i]][["fitFlag"]] == TRUE) {
                    suppressWarnings( plot.ggSpline() )
                  }
                }
      } else {
        for(i in 1:length(flFitRes[["flFit"]][["flFittedSplines"]])){
          if (length(grep("^NA ", names(flFitRes[["flFit"]][["flFittedSplines"]])[i]))==0 && flFitRes[["flFit"]][["flFittedSplines"]][[i]][["fitFlag"]] == TRUE) {
            suppressWarnings( plot.ggSpline() )
          }
        }
      }
    }
  } else { # of if(all(c('pdf', 'html') %in% format))
    if(parallelize){
      foreach(i = 1:length(flFitRes[["flFit"]][["flFittedSplines"]]),
              .packages = "ggplot2") %dopar% {
                if (length(grep("^NA ", names(flFitRes[["flFit"]][["flFittedSplines"]])[i]))==0 && flFitRes[["flFit"]][["flFittedSplines"]][[i]][["fitFlag"]] == TRUE) {
                  suppressWarnings( plot.ggSpline() )
                }
              }
    } else {
      for(i in 1:length(flFitRes[["flFit"]][["flFittedSplines"]])){
        if (length(grep("^NA ", names(flFitRes[["flFit"]][["flFittedSplines"]])[i]))==0 && flFitRes[["flFit"]][["flFittedSplines"]][[i]][["fitFlag"]] == TRUE) {
          suppressWarnings( plot.ggSpline() )
        }
      }
    }
  }

  Files_list <- list.files(path = plotdir,
                           pattern = "^PlotSpline_",
                           full.names = TRUE)
  sort.ndx <-
    match(gsub("∙|>|<|\\(|\\)", "_", gsub("%", "_", gsub("\\?", "_", gsub(" ", "_", gsub("\\/", "-", gsub(
      " \\| ", "_", names(flFitRes$flFit$flFittedSplines)
    )))))), gsub(".+PlotSpline_", "", gsub(".pdf", "", Files_list)))
  sort.ndx <- sort.ndx[!is.na(sort.ndx)]
  knitr::include_graphics(Files_list[sort.ndx], dpi = 300, error = F)
}

r if(ec50){"\\clearpage"}

r if(ec50 && control$dr.method == "spline"){"Dose-response analysis - Spline fit"} else if (ec50 && control$dr.method == "model"){"Dose-response analysis - Model fit"}

cat(paste0("_", length(flFitRes$drFit$drTable$Test), "_ conditions were identified:\n",
           paste(colFmt(flFitRes$drFit$drTable$Test, 'NavyBlue'), "\n", collapse = ", ")))
cat("  \n")
ec50.df <- data.frame()
for(i in 1:length(flFitRes$drFit$drFittedSplines)){
  ec50.df <- plyr::rbind.fill(ec50.df, data.frame("Condition" = names(flFitRes$drFit$drFittedSplines)[i],
                              "EC50" = round(flFitRes$drFit$drFittedSplines[[i]]$parameters$EC50, 3),
                              "Response" = round(flFitRes$drFit$drFittedSplines[[i]]$parameters$yEC50, 3))
  )
}
names(ec50.df)[3] <- paste0("Response (", flFitRes$drFit$drFittedSplines[[1]]$parameters$test, ")")
knit_table(ec50.df, caption = "Dose-Response Analysis - Spline Fits")
suppressWarnings(
  plot.drFit(flFitRes$drFit, export = export)
)
boot.ec50.df <- data.frame()
  for (i in 1:length(flFitRes$drFit$drBootSplines)){
    boot.ec50.df <-
      plyr::rbind.fill(
        boot.ec50.df,
        data.frame(
          "Condition" = flFitRes$drFit$drTable$Test[i],
          "EC50.boot" = paste(round(as.numeric(flFitRes$drFit$drTable$drboot.meanEC50[i]), 3),"\u00B1", round(as.numeric(flFitRes$drFit$drTable$drboot.sdEC50[i]),3)),
          "Response.boot" = paste(round(as.numeric(flFitRes$drFit$drTable$drboot.meanEC50y[i]), 3),"\u00B1", round(as.numeric(flFitRes$drFit$drTable$drboot.sdEC50y[i]),3))
        )
      )
  }
  knit_table(boot.ec50.df, caption = "Dose-Response Analysis - Bootstrapping")
for(i in 1:length(flFitRes$drFit$drBootSplines)){
  if(flFitRes$drFit$drBootSplines[[i]]$bootFlag == TRUE){
    plot.drBootSpline(flFitRes$drFit$drBootSplines[[i]], width = 6, height = 4.5, export = export, out.dir = normalizePath(wd.plots))
  }
}
cat(paste0("_", length(flFitRes$drFit$drTable$Test), "_ conditions were identified:\n",
           paste(colFmt(flFitRes$drFit$drTable$Test, 'NavyBlue'), collapse = ", ")))
cat("  \n")

ec50.df <- data.frame()
for(i in 1:length(flFitRes$drFit$drFittedModels)){
  ec50.df <- plyr::rbind.fill(ec50.df, data.frame("Condition" = names(flFitRes$drFit$drFittedModels)[i],
                              "K" = round(flFitRes$drFit$drFittedModels[[i]]$parameters$K.orig, 3),
                              "y.min" = round(flFitRes$drFit$drFittedModels[[i]]$parameters$y.min, 3),
                              "y.max" = round(flFitRes$drFit$drFittedModels[[i]]$parameters$y.max, 3),
                              "fold change" = round(flFitRes$drFit$drFittedModels[[i]]$parameters$fc, 3),
                              "n" = round(flFitRes$drFit$drFittedModels[[i]]$parameters$n, 3),
                              "yEC50" = round(flFitRes$drFit$drFittedModels[[i]]$parameters$yEC50.orig, 3))
  )
}
names(ec50.df)[7] <- paste0("Response (", flFitRes$drFit$drFittedModels[[1]]$parameters$test, ")")
knit_table(ec50.df, caption = "Dose-Response Analysis - Spline Fits")
for(i in 1:length(flFitRes[["drFit"]][["drFittedModels"]])){
  try(
    suppressWarnings(
      plot.drFitFLModel(flFitRes$drFit$drFittedModels[[i]], export = export)
    )
  )
}
suppressWarnings(
  plot.dr_parameter(flFitRes, param = "K", export = export)
)
suppressWarnings(
  plot.dr_parameter(flFitRes, param = "fc", export = export)
)
suppressWarnings(
  plot.dr_parameter(flFitRes, param = "y.min", export = export)
)
suppressWarnings(
  plot.dr_parameter(flFitRes, param = "y.max", export = export)
)

r if((!is.null(mean.grp) | !is.null(mean.conc)) && (!is.na(mean.grp) | !is.na(mean.conc)) ){"\\clearpage"}

r if((!is.null(mean.grp) | !is.null(mean.conc)) && (!is.na(mean.grp) | !is.na(mean.conc)) ){"Group average plots"}

if("all" %in% mean.grp){
  if(length(flFitRes$flFit$flFittedSplines[[1]]$spline)>1){
    logy <- control$log.y.spline
    suppressWarnings(
      plot.flFitRes(flFitRes, basesize = 15, export = export, plot=TRUE, log.y = logy, mean = T, out.dir = normalizePath(wd.plots), legend.position = "bottom", legend.ncol = 4)
    )
  }
} else if(!is.null(mean.grp) && !is.na(mean.grp)){
  for(i in 1:length(mean.grp)){
    if(length(grep(mean.grp[i], as.character(names(flFitRes$flFit$flFittedSplines))))>0){
      suppressWarnings(
        plot.flFitRes(flFitRes, names = unlist(mean.grp[i]), basesize = 15, export = export, plot=TRUE, log.y = T, mean = T, out.dir = normalizePath(wd.plots), legend.position = "bottom", legend.ncol = 4)
      )
    }
  }
}
if(!is.null(mean.conc) && !is.na(mean.conc)){
  for(i in 1:length(mean.conc)){
    if(length(grep(mean.conc[i], str_extract(names(flFitRes$flFit$flFittedSplines), "[:alnum:]+$")))>0){
      suppressWarnings(
        plot.flFitRes(flFitRes, conc = unlist(mean.conc[i]), basesize = 15, export = export, plot=TRUE, log.y = T, mean = T, out.dir = normalizePath(wd.plots), legend.position = "bottom", legend.ncol = 4)
      )
    }
  }
}


Try the QurvE package in your browser

Any scripts or data that you put into this service are public.

QurvE documentation built on May 29, 2024, 3 a.m.