Wald.test | R Documentation |
This function flexibly provides the Wald test for any two q-vectors of a given item in the Q-matrix,
but requires that the two q-vectors differ by only one attribute. Additionally, this function needs
to accept a CDM.obj
.
Wald.test(CDM.obj, q1, q2, i = 1)
CDM.obj |
An object of class |
q1 |
A q-vector |
q2 |
Another q-vector |
i |
the item needed to be validated |
Wald = \left[\mathbf{R} \times P_{i}(\mathbf{\alpha})\right]^{'}
(\mathbf{R} \times \mathbf{V}_{i} \times \mathbf{R})^{-1}
\left[\mathbf{R} \times P_{i}(\mathbf{\alpha})\right]
An object of class htest
containing the following components:
The statistic of the Wald test.
the degrees of freedom for the Wald-statistic.
The p value
library(Qval)
set.seed(123)
K <- 3
I <- 20
N <- 500
IQ <- list(
P0 = runif(I, 0.0, 0.2),
P1 = runif(I, 0.8, 1.0)
)
Q <- sim.Q(K, I)
data <- sim.data(Q = Q, N = N, IQ = IQ, model = "GDINA", distribute = "horder")
CDM.obj <- CDM(data$dat, Q)
q1 <- c(1, 0, 0)
q2 <- c(1, 1, 0)
## Discuss whether there is a significant difference when
## the q-vector of the 2nd item in the Q-matrix is q1 or q2.
Wald.test.obj <- Wald.test(CDM.obj, q1, q2, i=2)
print(Wald.test.obj)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.