| zTNR | R Documentation |
Calculate True-Negative Rate (TNR)
zTNR(Q.true, Q.orig, Q.sug)
Q.true |
The true Q-matrix. |
Q.orig |
The Q-matrix need to be validated. |
Q.sug |
The Q-matrix that has been validated. |
TNR is defined as the proportion of correct elements which are correctly retained:
TNR = \frac{\sum_{i=1}^{I}\sum_{k=1}^{K}I(q_{ik}^{t} = q_{ik}^{s} | q_{ik}^{t} \neq q_{ik}^{o})}
{\sum_{i=1}^{I}\sum_{k=1}^{K}I(q_{ik}^{t} \neq q_{ik}^{o})}
where q_{ik}^{t} denotes the kth attribute of item i in the true Q-matrix (Q.true),
q_{ik}^{o} denotes kth attribute of item i in the original Q-matrix(Q.orig),
q_{ik}^{s} denotes kth attribute of item i in the suggested Q-matrix(Q.sug),
and I(\cdot) is the indicator function.
A numeric (TNR index).
library(Qval)
set.seed(123)
Q1 <- sim.Q(5, 30)
Q2 <- sim.MQ(Q1, 0.1)
Q3 <- sim.MQ(Q1, 0.05)
TNR <- zTNR(Q1, Q2, Q3)
print(TNR)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.