cprob | R Documentation |
Function to extract estimated contour probabilities of a particular effect estimated with
P-splines using Markov chain Monte Carlo (MCMC) estimation techniques. Note that, the contour
probability option must be specified within function sx
, see the example.
cprob(object, model = NULL, term = NULL, ...)
object |
an object of class |
model |
for which model the contour probabilities should be provided, either an integer or a
character, e.g. |
term |
if not |
... |
not used. |
Nikolaus Umlauf, Thomas Kneib, Stefan Lang, Achim Zeileis.
Brezger, A., Lang, S. (2008): Simultaneous probability statements for Bayesian P-splines. Statistical Modeling, 8, 141–186.
bayesx
.
## Not run:
## generate some data
set.seed(111)
n <- 500
## regressor
dat <- data.frame(x = runif(n, -3, 3))
## response
dat$y <- with(dat, 1.5 + sin(x) + rnorm(n, sd = 0.6))
## estimate model
## need to set the contourprob option,
## otherwise BayesX will not calculate probabilities
## see also the reference manual of BayesX available
## at www.BayesX.org
b <- bayesx(y ~ sx(x, bs = "ps", contourprob = 4), data = dat)
## extract contour probabilities
cprob(b, term = "sx(x)")
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.