View source: R/Formula.translate.R
Formula.translate | R Documentation |
A model formula, as a formula object written in R-type syntax, is translated into an R list object.
Formula.translate(Formula, D = "Normal", indata)
Formula |
A |
D |
A character string/vector specifying the type of distribution to be modelled, which
can include |
indata |
A data.frame object containing the data to be modelled.
Optional (can |
Outputs an R list object, which is then used as the input for
write.IGLS
or write.MCMC
.
Zhang, Z., Charlton, C.M.J., Parker, R.M.A., Leckie, G., and Browne, W.J. (2016) Centre for Multilevel Modelling, University of Bristol.
runMLwiN
, write.IGLS
, write.MCMC
; for
function allowing back-compatibility with Formula syntax used in older
versions of R2MLwiN (<0.8.0) see Formula.translate.compat
.
## Not run:
# NB: See demo(packge = 'R2MLwiN') for a wider range of examples.
library(R2MLwiN)
# NOTE: if MLwiN not saved in location R2MLwiN defaults to, specify path via:
# options(MLwiN_path = 'path/to/MLwiN vX.XX/')
# If using R2MLwiN via WINE, the path may look like this:
# options(MLwiN_path = '/home/USERNAME/.wine/drive_c/Program Files (x86)/MLwiN vX.XX/')
# Two-level random intercept model with student (level 1) nested within
# school (level 2) and standlrt added to the fixed part.
# Importantly, the ordering of school and student reflects their hierarchy,
# with the highest level (school) specified first.
# E.g. see demo(UserGuide04)
data(tutorial, package = 'R2MLwiN')
(mymodel1 <- runMLwiN(normexam ~ 1 + standlrt + (1 | school) + (1 | student),
data = tutorial))
# Adding a random slope
(mymodel2 <- runMLwiN(normexam ~ 1 + standlrt + (1 + standlrt | school)
+ (1 | student), data = tutorial))
# Exploring complex level 1 variation
# E.g. see demo(UserGuide07)
(mymodel3 <- runMLwiN(normexam ~ 1 + standlrt + (1 + standlrt | school)
+ (1 + standlrt | student), data = tutorial))
# Logit link with cons specified as denominator
# Note level 1 ID not explicitly specified
# E.g. see demo(UserGuide09)
data(bang, package = 'R2MLwiN')
(mymodel4 <- runMLwiN(logit(use, cons) ~ 1 + lc + age + (1 | district),
D = 'Binomial', data = bang))
# Mixed response model
# Note using MCMC estimation (EstM = 1)
# Normal (english) and Bernoulli (behaviour) distributed responses
# probit link modelling behaviour with cons as denominator
# E.g. see demo(MCMCGuide19)
data(jspmix1, package = 'R2MLwiN')
(mymodel <- runMLwiN(c(english, probit(behaviour, cons)) ~
1 + sex + ravens + fluent[1] + (1 | school) + (1[1] | id),
D = c('Mixed', 'Normal', 'Binomial'),
estoptions = list(EstM = 1,
mcmcMeth = list(fixM = 1, residM = 1, Lev1VarM = 1)),
data = jspmix1))
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.