Nothing
# to obtain an example madelon dataset
library(MDFS)
mdfs_omp_set_num_threads(1) # only to pass CRAN checks
data(madelon)
data <- madelon$data
decision <- madelon$decision
# to get repeatable results
set.seed(12345)
#
# Main flow starts below this comment.
#
library(RAFS)
# enhanced to use FDR with 0.10 level and keep the raw p-values for custom needs
custom_fs_fun <- function(train_data, train_decision, seed) {
fs_result <- MDFS(
train_data,
train_decision,
dimensions = 1,
divisions = 1,
discretizations = 30,
seed = seed,
p.adjust.method = "fdr",
level = 0.10
)
return(list(
p_vals = fs_result$p.value,
rel_vars = fs_result$relevant.variables,
rel_vars_rank = order(fs_result$p.value[fs_result$relevant.variables])
))
}
# using 2 CV loops (seeds) only to speed things up
rafs_results <- run_rafs(data, decision, seeds = sample.int(32767, 2), fs_fun = custom_fs_fun)
# finding top 5 representatives
rafs_reps_popcnts <- get_rafs_reps_popcnts(rafs_results, n_clusters_range = 5)
rafs_top_reps_5 <- get_rafs_top_reps_from_popcnts(rafs_reps_popcnts$stig_single, 5)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.