ramBLCS | R Documentation |
Conduct bivariate latent change score analysis
ramBLCS(data, y, x, timey, timex, ram.out = FALSE, betax,
betay, gammax, gammay, mx0, mxs, my0, mys, varex, varey,
varx0, vary0, varxs, varys, varx0y0, varx0xs, vary0ys,
varx0ys, vary0xs, varxsys, ...)
data |
Data |
y |
Indices for y variables |
x |
Indices for x variables |
timey |
Time for y variables |
timex |
Time for x variables |
ram.out |
whether print ram matrices |
betax |
Starting value |
betay |
Starting value |
gammax |
Starting value |
gammay |
Starting value |
mx0 |
Starting value |
mxs |
Starting value |
my0 |
Starting value |
mys |
Starting value |
varex |
Starting value |
varey |
Starting value |
varx0 |
Starting value |
vary0 |
Starting value |
varxs |
Starting value |
varys |
Starting value |
varx0y0 |
Starting value |
varx0xs |
Starting value |
vary0ys |
Starting value |
varx0ys |
Starting value |
vary0xs |
Starting value |
varxsys |
Starting value |
... |
Options can be used for |
model |
The lavaan model specification of the bivariate latent change score model |
lavaan |
The lavaan output |
ram |
Output in terms of RAM matrices |
Zhang, Z., Hamagami, F., Grimm, K. J., & McArdle, J. J. (2015). Using R package RAMpath for tracing SEM path diagrams and conducting complex longitudinal data analysis. Structural Equation Modeling, 22(1), 132-147. https://doi.org/10.1080/10705511.2014.935257
data(ex3)
## Test the bivariate latent change score model ramBLCS
test.blcs<-ramBLCS(ex3, 7:12, 1:6, ram.out=TRUE)
summary(test.blcs$lavaan, fit=TRUE)
bridge<-ramPathBridge(test.blcs$ram, allbridge=FALSE,indirect=FALSE)
## uncomment to plot
## plot(bridge, 'blcs')
## Test the vector field plot
## test.blcs is the output of the ramBLCS function.
ramVF(test.blcs, c(0,80),c(0,80), length=.05, xlab='X', ylab='Y',scale=.5, ninterval=9)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.