validate | R Documentation |
This set of functions inspect a data frame to anticipate problems before writing with REDCap's API.
validate_for_write( d, convert_logical_to_integer, record_id_name )
validate_data_frame_inherits( d )
validate_no_logical( d, stop_on_error = FALSE )
validate_field_names( d, stop_on_error = FALSE )
validate_record_id_name( d, record_id_name = "record_id", stop_on_error = FALSE )
validate_repeat_instance( d, stop_on_error = FALSE )
validate_uniqueness( d, record_id_name, stop_on_error = FALSE)
d |
The |
record_id_name |
The name of the field that represents one record. The default name in REDCap is "record_id". |
stop_on_error |
If |
convert_logical_to_integer |
This mimics the |
All functions listed in the Usage section above inspect a specific aspect
of the dataset. The validate_for_write()
function executes all these
individual validation checks. It allows the client to check everything
with one call.
Currently, the individual checks include:
validate_data_frame_inherits(d)
:
d
inherits from base::data.frame()
validate_field_names(d)
:
The columns of d
start with a lowercase letter, and subsequent optional characters are a
sequence of (a) lowercase letters, (b) digits 0-9, and/or (c) underscores.
(The exact regex is ^[a-z][0-9a-z_]*$
.)
validate_record_id_name(d)
:
d
contains a field called "record_id",
or whatever value was passed to record_id_name
.
validate_no_logical(d)
(unless convert_logical_to_integer
is TRUE):
d
does not contain
logical
values (because REDCap typically wants 0
/1
values instead of
FALSE
/TRUE
).
validate_repeat_instance(d)
:
d
has an integer for redcap_repeat_instance
, if the column is present.
validate_uniqueness(d, record_id_name = record_id_name)
:
d
does not contain multiple rows with duplicate values of
record_id
,
redcap_event_name
,
redcap_repeat_instrument
, and
redcap_repeat_instance
(depending on the longitudinal & repeating structure of the project).
Technically duplicate rows are not errors, but we feel that this will almost always be unintentional, and lead to an irrecoverable corruption of the data.
If you encounter additional types of problems when attempting to write to REDCap, please tell us by creating a new issue, and we'll incorporate a new validation check into this function.
A tibble::tibble()
, where each potential violation is a row.
The two columns are:
field_name
: The name of the field/column/variable that might cause
problems during the upload.
field_index
: The position of the field. (For example, a value of
'1' indicates the first column, while a '3' indicates the third column.)
concern
: A description of the problem potentially caused by the field
.
suggestion
: A potential solution to the concern.
Will Beasley
The official documentation can be found on the 'API Help Page' and 'API Examples' pages on the REDCap wiki (i.e., https://community.projectredcap.org/articles/456/api-documentation.html and https://community.projectredcap.org/articles/462/api-examples.html). If you do not have an account for the wiki, please ask your campus REDCap administrator to send you the static material.
d1 <- data.frame(
record_id = 1:4,
flag_logical = c(TRUE, TRUE, FALSE, TRUE),
flag_Uppercase = c(4, 6, 8, 2)
)
REDCapR::validate_for_write(d = d1)
REDCapR::validate_for_write(d = d1, convert_logical_to_integer = TRUE)
# If `d1` is not a data.frame, the remaining validation checks are skipped:
# REDCapR::validate_for_write(as.matrix(mtcars))
# REDCapR::validate_for_write(c(mtcars, iris))
d2 <- tibble::tribble(
~record_id, ~redcap_event_name, ~redcap_repeat_instrument, ~redcap_repeat_instance,
1L, "e1", "i1", 1L,
1L, "e1", "i1", 2L,
1L, "e1", "i1", 3L,
1L, "e1", "i1", 4L,
1L, "e1", "i2", 1L,
1L, "e1", "i2", 2L,
1L, "e1", "i2", 3L,
1L, "e1", "i2", 4L,
2L, "e1", "i1", 1L,
2L, "e1", "i1", 2L,
2L, "e1", "i1", 3L,
2L, "e1", "i1", 4L,
)
validate_uniqueness(d2)
validate_for_write(d2)
d3 <- tibble::tribble(
~record_id, ~redcap_event_name, ~redcap_repeat_instrument, ~redcap_repeat_instance,
1L, "e1", "i1", 1L,
1L, "e1", "i1", 3L,
1L, "e1", "i1", 3L, # Notice this duplicates the row above
)
# validate_uniqueness(d3)
# Throws error:
# validate_uniqueness(d3, stop_on_error = TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.