| rkcca | R Documentation | 
#A robust correlation
rkcca(X, Y, lossfu = "Huber", kernel = "rbfdot", gamma = 1e-05, ncomps = 10)
X | 
 a data matrix index by row  | 
Y | 
 a data matrix index by row  | 
lossfu | 
 a loss function: square, Hampel's or Huber's loss  | 
kernel | 
 a positive definite kernel  | 
gamma | 
 the hyper-parameters  | 
ncomps | 
 the number of canonical vectors  | 
An S3 object containing the following slots:
rkcor | 
 Robsut kernel canonical correlation  | 
 rxcoef | 
 Robsut kernel canonical coficient of X dataset  | 
 rycoef | 
 Robsut kernel canonical coficient of Y dataset  | 
 rxcv | 
 Robsut kernel canonical vector of X dataset  | 
 rycv | 
 Robsut kernel canonical vector of Y dataset  | 
Md Ashad Alam <malam@tulane.edu>
Md Ashad Alam, Kenji Fukumizu and Yu-Ping Wang (2018), Influence Function and Robust Variant of Kernel Canonical Correlation Analysis, Neurocomputing, Vol. 304 (2018) 12-29.
M. Romanazzi (1992), Influence in canonical correlation analysis, Psychometrika vol 57(2) (1992) 237-259.
See also as  ifcca, rkcca, ifrkcca
##Dummy data: X <- matrix(rnorm(1000),100); Y <- matrix(rnorm(1000),100) rkcca(X,Y, "Huber", "rbfdot", 1e-05, 10)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.