View source: R/rl_dnn_config.R
rl_dnn_config | R Documentation |
DNN (deep neural network) configuration for reinforcement learning. For detail, see Section 3.1 of the original paper.
rl_dnn_config(
fcnet_hiddens = c(256L, 256L),
fcnet_activation = c("relu", "tanh", "swish", "silu", "linear"),
...
)
A positive integer vector. Numbers of units of the intermediate layers. | |
fcnet_activation |
A character value specifying the activation function. Possible values are "ReLU" (default), "tanh", "Swish" (or "SiLU"), or "linear". |
... |
Other configurations. See source code of RLlib. https://github.com/ray-project/ray/blob/master/rllib/models/catalog.py |
A list of DNN configuration parameters
## Not run:
escalation_rule <- learn_escalation_rule(
J = 6, target = 0.25, epsilon = 0.04, delta = 0.1,
N_total = 36, N_cohort = 3, seed = 123,
rl_config = rl_config_set(
iter = 1000,
# We change the DNN model
model = rl_dnn_config(fcnet_hiddens = c(512L, 512L), fcnet_activation = "tanh")
)
)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.