Nothing
#' DNN Configuration for Reinforcement Learning
#'
#' DNN (deep neural network) configuration for reinforcement learning.
#' For detail, see Section 3.1 of the original paper.
#'
#' @param fcnet_hiddens A positive integer vector. Numbers of units of the
#' intermediate layers.
#' @param fcnet_activation A character value specifying the activation function.
#' Possible values are "ReLU" (default), "tanh", "Swish" (or "SiLU"), or
#' "linear".
#' @param ... Other configurations. See source code of RLlib.
#' https://github.com/ray-project/ray/blob/master/rllib/models/catalog.py
#'
#' @return A list of DNN configuration parameters
#'
#' @examples
#' \dontrun{
#' escalation_rule <- learn_escalation_rule(
#' J = 6, target = 0.25, epsilon = 0.04, delta = 0.1,
#' N_total = 36, N_cohort = 3, seed = 123,
#' rl_config = rl_config_set(
#' iter = 1000,
#' # We change the DNN model
#' model = rl_dnn_config(fcnet_hiddens = c(512L, 512L), fcnet_activation = "tanh")
#' )
#' )}
#'
#' @export
rl_dnn_config <- function(
fcnet_hiddens = c(256L, 256L),
fcnet_activation = c("relu", "tanh", "swish", "silu", "linear"), ...) {
fcnet_hiddens <- as.integer(fcnet_hiddens)
fcnet_activation <- tolower(fcnet_activation)
fcnet_activation <- match.arg(fcnet_activation)
config <- list(fcnet_hiddens = fcnet_hiddens, fcnet_activation = fcnet_activation)
other_config <- list(...)
append(config, other_config)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.