Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
fig.path = "man/figures/README-",
out.width = "100%"
)
## ----eval=FALSE---------------------------------------------------------------
# install.packages("RLescalation")
## ----eval=FALSE---------------------------------------------------------------
# # install.packages("remotes")
# remotes::install_github("MatsuuraKentaro/RLescalation")
## ----eval=FALSE---------------------------------------------------------------
# library(RLescalation)
## ----eval=FALSE, echo=FALSE---------------------------------------------------
# RLescalation::setup_python()
## ----eval=FALSE---------------------------------------------------------------
# escalation_rule <- learn_escalation_rule(
# J = 6, target = 0.25, epsilon = 0.04, delta = 0.1,
# N_total = 36, N_cohort = 3, seed = 123,
# rl_config = rl_config_set(iter = 1000)
# )
#
# escalation_rule
# #> <EscalationRule>
# #> dir: escalation_rules/20250101_162633
# #> created at: 2025-01-01 17:43:23
# #> call:
# #> learn_escalation_rule(J = 6, target = 0.25, epsilon = 0.04, delta = 0.1,
# #> N_total = 36, N_cohort = 3, seed = 123, rl_config = rl_config_set(iter = 1000))
# #> iterations: 1000
# #> checkpoints: 500, 600, 700, 800, 900, 1000
## ----eval=FALSE---------------------------------------------------------------
# current_dose <- 3
# some_Ns <- c(3, 6, 3, 0, 0, 0)
# some_DLTs <- c(0, 1, 1, 0, 0, 0)
#
# escalation_rule$opt_action(current_dose, some_Ns, some_DLTs)
# #> [1] "up"
## ----eval=FALSE---------------------------------------------------------------
# eval_scenarios <- list(
# c(0.04, 0.05, 0.09, 0.14, 0.15, 0.24),
# c(0.07, 0.16, 0.23, 0.27, 0.34, 0.55),
# c(0.34, 0.42, 0.46, 0.49, 0.58, 0.62),
# c(0.05, 0.08, 0.11, 0.15, 0.60, 0.72)
# )
#
# n_sim <- 1000 # the number of simulated clinical trials
# sim_list <- list()
#
# for (scenarioID in seq_len(length(eval_scenarios))) {
# prob_true <- eval_scenarios[[scenarioID]]
# for (simID in seq_len(n_sim)) {
# sim_one <- simulate_one_trial(escalation_rule, prob_true, seed = simID)
# sim_list[[length(sim_list) + 1]] <- data.frame(
# scenarioID = scenarioID, simID = simID, sim_one, check.names = FALSE)
# }
# }
#
# d_sim <- do.call(rbind, sim_list)
# head(d_sim, 13)
# #> scenarioID simID cohortID dose N DLT recommended
# #> 1 1 1 1 1 3 0 up
# #> 2 1 1 2 2 3 0 up
# #> 3 1 1 3 3 3 0 up
# #> 4 1 1 4 4 3 1 up
# #> 5 1 1 5 5 3 0 up
# #> 6 1 1 6 6 3 2 stay
# #> 7 1 1 7 6 3 2 stay
# #> 8 1 1 8 6 3 1 stay
# #> 9 1 1 9 6 3 1 stay
# #> 10 1 1 10 6 3 0 stay
# #> 11 1 1 11 6 3 0 stay
# #> 12 1 1 12 6 3 0 MTD_6
# #> 13 1 2 1 1 3 0 up
## ----eval=FALSE---------------------------------------------------------------
# library(dplyr)
#
# MTD_true <- list("MTD_6", c("MTD_3", "MTD_4"), "no_MTD", "MTD_4")
#
# d_res <- d_sim |>
# filter(cohortID == max(cohortID), .by = c(scenarioID, simID)) |>
# rowwise() |>
# mutate(correct = if_else(recommended %in% MTD_true[[scenarioID]], 1, 0)) |>
# ungroup() |>
# summarise(PCS = mean(correct), .by = scenarioID)
#
# d_res
# #> # A tibble: 4 × 2
# #> scenarioID PCS
# #> <int> <dbl>
# #> 1 1 0.833
# #> 2 2 0.731
# #> 3 3 0.411
# #> 4 4 0.531
## ----eval=FALSE---------------------------------------------------------------
# my_scenarios <- list(
# prob = list(c(0.05, 0.11, 0.25, 0.31, 0.32, 0.40),
# c(0.23, 0.27, 0.45, 0.47, 0.50, 0.57),
# c(0.38, 0.40, 0.43, 0.47, 0.51, 0.55)),
# MTD = list(3, c(1, 2), -1), # -1 means "no MTD"
# weight = c(1, 2, 1)
# )
#
# escalation_rule <- learn_escalation_rule(
# J = 6, target = 0.25, epsilon = 0.04, delta = 0.1,
# N_total = 36, N_cohort = 3, seed = 123,
# rl_config = rl_config_set(iter = 1000),
# rl_scenarios = my_scenarios
# )
## ----eval=FALSE---------------------------------------------------------------
# saveRDS(escalation_rule, file = "escalation_rule.RDS")
## ----eval=FALSE---------------------------------------------------------------
# escalation_rule <- readRDS(file = "escalation_rule.RDS")
## ----eval=FALSE---------------------------------------------------------------
# escalation_rule$input
## ----eval=FALSE---------------------------------------------------------------
# escalation_rule$log
## ----eval=FALSE---------------------------------------------------------------
# escalation_rule$resume_learning(iter = 100)
## ----eval=FALSE---------------------------------------------------------------
# another_escalation_rule <- EscalationRule$new(dir = "checkpoints/20250101_162633_00900")
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.