Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
fig.path = "man/figures/README-",
out.width = "100%"
)
## ----eval=FALSE---------------------------------------------------------------
# install.packages("RLoptimal")
## ----eval=FALSE---------------------------------------------------------------
# # install.packages("remotes")
# remotes::install_github("MatsuuraKentaro/RLoptimal")
## ----eval=FALSE---------------------------------------------------------------
# library(RLoptimal)
## ----eval=FALSE, echo=FALSE---------------------------------------------------
# RLoptimal::setup_python()
## -----------------------------------------------------------------------------
doses <- c(0, 2, 4, 6, 8)
models <- DoseFinding::Mods(
doses = doses, maxEff = 1.65,
linear = NULL, emax = 0.79, sigEmax = c(4, 5)
)
## ----eval=FALSE---------------------------------------------------------------
# allocation_rule <- learn_allocation_rule(
# models,
# N_total = 150, N_ini = rep(10, 5), N_block = 10, Delta = 1.3,
# outcome_type = "continuous", sd_normal = sqrt(4.5),
# seed = 123, rl_config = rl_config_set(iter = 1000),
# alpha = 0.025
# )
#
# allocation_rule
# #> <AllocationRule>
# #> dir: allocation_rules/20241201_114609
# #> created at: 2024-12-01 14:48:40
# #> call:
# #> learn_allocation_rule(models = models, N_total = 150, N_ini = rep(10,
# #> 5), N_block = 10, Delta = 1.3, outcome_type = "continuous",
# #> sd_normal = sqrt(4.5), seed = 123, rl_config = rl_config_set(iter = 1000),
# #> alpha = 0.025)
# #> iterations: 1000
# #> checkpoints: 500, 600, 700, 800, 900, 1000
## ----eval=FALSE---------------------------------------------------------------
# some_doses <- c( 0, 0, 0, 0, 2, 2, 4, 4, 4, 6, 6, 8, 8, 8)
# some_resps <- c(.2, .1, .0, .3, .2, .4, .1, .6, .8, .5, .8, 1.1, .9, 1.6)
#
# allocation_rule$opt_allocation_probs(some_doses, some_resps)
# #> 0 2 4 6 8
# #> 6.023860e-02 5.389110e-06 3.485905e-04 1.684970e-05 9.393906e-01
## ----eval=FALSE---------------------------------------------------------------
# probs <- allocation_rule$opt_allocation_probs(some_doses, some_resps)
# DoseFinding::rndDesign(probs, 10)
# #> [1] 1 0 1 0 8
## ----eval=FALSE---------------------------------------------------------------
# adjusted_alpha <- adjust_significance_level(
# allocation_rule, models,
# N_total = 150, N_ini = rep(10, 5), N_block = 10,
# outcome_type = "continuous", sd_normal = sqrt(4.5),
# alpha = 0.025, n_sim = 10000, seed = 123
# )
#
# adjusted_alpha
# #> [1] 0.02021423
## ----eval=FALSE---------------------------------------------------------------
# eval_models <- DoseFinding::Mods(
# doses = doses, maxEff = 1.65,
# linear = NULL, emax = 0.79, sigEmax = c(4, 5), exponential = 1, quadratic = - 1/12
# )
# true_response_matrix <- DoseFinding::getResp(eval_models, doses = doses)
# true_response_list <- as.list(data.frame(true_response_matrix, check.names = FALSE))
#
# n_sim <- 1000 # the number of simulated clinical trials
# sim_list <- list()
#
# for (true_model_name in names(true_response_list)) {
# true_response <- true_response_list[[true_model_name]]
# for (simID in seq_len(n_sim)) {
# sim_one <- simulate_one_trial(
# allocation_rule, models,
# true_response = true_response,
# N_total = 150, N_ini = rep(10, 5), N_block = 10,
# Delta = 1.3, outcome_type = "continuous", sd_normal = sqrt(4.5),
# alpha = adjusted_alpha, seed = simID, eval_type = "all"
# )
# sim_list[[length(sim_list) + 1]] <- data.frame(
# simID = simID, true_model_name = true_model_name, sim_one, check.names = FALSE)
# }
# }
#
# d_sim <- do.call(rbind, sim_list)
# head(d_sim, 10)
# #> simID true_model_name min_p_value selected_model_name estimated_target_dose MAE n_of_0 n_of_2 n_of_4 n_of_6 n_of_8
# #> 1 1 linear 2.664834e-03 linear 6.4373669 0.02152038 0.2800000 0.4866667 0.06666667 0.07333333 0.09333333
# #> 2 2 linear 5.367406e-03 linear 7.5199780 0.16688577 0.4733333 0.1333333 0.06666667 0.18666667 0.14000000
# #> 3 3 linear 1.146988e-04 sigEmax 5.3126300 0.31777648 0.2800000 0.4466667 0.06666667 0.07333333 0.13333333
# #> 4 4 linear 2.559644e-02 <NA> NA NA 0.4133333 0.0800000 0.08666667 0.24000000 0.18000000
# #> 5 5 linear 5.367572e-03 linear 7.3541945 0.14740065 0.3733333 0.2600000 0.12000000 0.13333333 0.11333333
# #> 6 6 linear 6.299454e-04 emax 3.4787829 0.38459844 0.3466667 0.4200000 0.06666667 0.06666667 0.10000000
# #> 7 7 linear 3.397589e-05 linear 5.2822467 0.19928701 0.3200000 0.3733333 0.06666667 0.08666667 0.15333333
# #> 8 8 linear 2.107865e-02 <NA> NA NA 0.2866667 0.4733333 0.06666667 0.06666667 0.10666667
# #> 9 9 linear 4.607294e-05 linear 5.6278953 0.12371108 0.3600000 0.2333333 0.14666667 0.06666667 0.19333333
# #> 10 10 linear 4.710722e-04 emax 0.3685151 0.45576455 0.2533333 0.4933333 0.06666667 0.10666667 0.08000000
## ----eval=FALSE---------------------------------------------------------------
# rl_models <- DoseFinding::Mods(
# doses = doses, maxEff = 1.65,
# linear = NULL, emax = 0.79, sigEmax = c(4, 5), exponential = 1
# )
#
# allocation_rule <- learn_allocation_rule(
# models,
# N_total = 150, N_ini = rep(10, 5), N_block = 10, Delta = 1.3,
# outcome_type = "continuous", sd_normal = sqrt(4.5),
# seed = 123, rl_models = rl_models, rl_config = rl_config_set(iter = 1000),
# alpha = 0.025
# )
## ----eval=FALSE---------------------------------------------------------------
# doses <- c(0, 0.5, 1.5, 2.5, 4)
#
# models <- DoseFinding::Mods(
# doses = doses,
# placEff = qlogis(0.1),
# maxEff = qlogis(0.35) - qlogis(0.1),
# emax = c(0.25, 1), sigEmax = rbind(c(1, 3), c(2.5, 4)), betaMod = c(1.1, 1.1)
# )
#
# allocation_rule <- learn_allocation_rule(
# models,
# N_total = 200, N_ini = rep(10, 5), N_block = 10,
# Delta = 1.4, outcome_type = "binary",
# seed = 123, rl_config = rl_config_set(iter = 1000),
# alpha = 0.05
# )
## ----eval=FALSE---------------------------------------------------------------
# saveRDS(allocation_rule, file = "allocation_rule.RDS")
## ----eval=FALSE---------------------------------------------------------------
# allocation_rule <- readRDS(file = "allocation_rule.RDS")
## ----eval=FALSE---------------------------------------------------------------
# allocation_rule$input
## ----eval=FALSE---------------------------------------------------------------
# allocation_rule$log
## ----eval=FALSE---------------------------------------------------------------
# allocation_rule$resume_learning(iter = 100)
## ----eval=FALSE---------------------------------------------------------------
# another_allocation_rule <- AllocationRule$new(dir = "checkpoints/20241201_114609_00900")
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.