apply.MABAC | R Documentation |
R implementation of the MABAC method. The MABAC method computes the distance between each alternative and the Boundary Approximation Area (BAA), based on a weighted normalized decision matrix.
apply.MABAC(mat, weights, types)
mat |
A numeric matrix. Rows are alternatives; columns are criteria. |
weights |
A numeric vector of weights corresponding to criteria columns. Must sum to 1. |
types |
An integer vector of the same length as |
A numeric vector with the MABAC preference values for each alternative. A higher value indicates a more preferred alternative.
# Example usage:
mat <- matrix(c(
22600, 3800, 2, 5, 1.06, 3.00, 3.5, 2.8, 24.5, 6.5,
19500, 4200, 3, 2, 0.95, 3.00, 3.4, 2.2, 24.0, 7.0,
21700, 4000, 1, 3, 1.25, 3.20, 3.3, 2.5, 24.5, 7.3,
20600, 3800, 2, 5, 1.05, 3.25, 3.2, 2.0, 22.5, 11.0,
22500, 3800, 4, 3, 1.35, 3.20, 3.7, 2.1, 23.0, 6.3,
23250, 4210, 3, 5, 1.45, 3.60, 3.5, 2.8, 23.5, 7.0,
20300, 3850, 2, 5, 0.90, 3.25, 3.0, 2.6, 21.5, 6.0
), nrow = 7, byrow = TRUE)
weights <- c(0.146, 0.144, 0.119, 0.121, 0.115, 0.101, 0.088, 0.068, 0.050, 0.048)
types <- c(-1, 1, 1, 1, -1, -1, 1, 1, 1, 1)
apply.MABAC(mat, weights, types)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.