| trainMOA.MOA_recommender | R Documentation | 
Train a MOA recommender (e.g. a BRISMFPredictor) on a datastream
## S3 method for class 'MOA_recommender' trainMOA(model, formula, data, subset, na.action = na.exclude, transFUN = identity, chunksize = 1000, trace = FALSE, options = list(maxruntime = +Inf), ...)
model | 
 an object of class   | 
formula | 
 a symbolic description of the model to be fit. This should be of the form rating ~ userid + itemid, in that sequence.
These should be columns in the   | 
data | 
 an object of class   | 
subset | 
 an optional vector specifying a subset of observations to be used in the fitting process.  | 
na.action | 
 a function which indicates what should happen when the data contain   | 
transFUN | 
 a function which is used after obtaining   | 
chunksize | 
 the number of rows to obtain from the   | 
trace | 
 logical, indicating to show information on how many datastream chunks are already processed
as a   | 
options | 
 a names list of further options. Currently not used.  | 
... | 
 other arguments, currently not used yet  | 
An object of class MOA_trainedmodel which is a list with elements
model: the updated supplied model object of class MOA_recommender
call: the matched call
na.action: the value of na.action
terms: the terms in the model
transFUN: the transFUN argument
MOA_recommender, datastream_file, datastream_dataframe, 
datastream_matrix, datastream_ffdf, datastream,
predict.MOA_trainedmodel
require(recommenderlab) data(MovieLense) x <- getData.frame(MovieLense) x$itemid <- as.integer(as.factor(x$item)) x$userid <- as.integer(as.factor(x$user)) x$rating <- as.numeric(x$rating) x <- head(x, 5000) movielensestream <- datastream_dataframe(data=x) movielensestream$get_points(3) ctrl <- MOAoptions(model = "BRISMFPredictor", features = 10) brism <- BRISMFPredictor(control=ctrl) mymodel <- trainMOA(model = brism, rating ~ userid + itemid, data = movielensestream, chunksize = 1000, trace=TRUE) summary(mymodel$model)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.