View source: R/fill.covariates.R
fill.covariates | R Documentation |
Replaces covariate names in design matrix with specific values to compute
estimates of real parameters at those values using the dataframe from
find.covariates
after any value replacement.
fill.covariates(model, values)
model |
MARK model object |
values |
a dataframe matching structure of output from find.covariates with the user-defined values entered |
The design matrix for a MARK model with individual covariates contains the
covariate names used in the model. In computing the real parameters for the
encounter history of an individual it replaces instances of covariate names
with the individual covariate values. This function replaces the cells in
the design matrix that contain individidual covariates with user-specified
values which is an edited version (if needed) of the dataframe returned by
find.covariates
.
New design matrix with user-defined covariate values entered in place of covariate names
Jeff Laake
find.covariates
, compute.real
data(dipper) dipper$nsex=as.numeric(dipper$sex)-1 dipper$weight=rnorm(294) #NOTE: This generates random valules for the weights so the answers using # ~weight will vary each time it is run mod=mark(dipper,model.parameters=list(Phi=list(formula=~nsex+weight)),delete=TRUE) # Show approach using individual calls to find.covariates, fill.covariates # and compute.real fc=find.covariates(mod,dipper) fc$value[fc$var=="nsex"]=0 # assign sex value to Female design=fill.covariates(mod,fc) # fill design matrix with values # compute and output survivals for females at average weight female.survival=compute.real(mod,design=design)[1,] female.survival # Next show same thing with a call to compute.real and a data frame for # females and then males # compute and output survivals for females at average weight female.survival=compute.real(mod,data= data.frame(nsex=0,weight=mean(dipper$weight)))[1,] female.survival male.survival=compute.real(mod,data=data.frame(nsex=1, weight=mean(dipper$weight)))[1,] male.survival # Fit model using sex as a group/factor variable and # compute v-c matrix for estimates mod=mark(dipper,groups="sex", model.parameters=list(Phi=list(formula=~sex+weight)),delete=TRUE) survival.by.sex=compute.real(mod,data=dipper,vcv=TRUE) survival.by.sex$real[1:2] # estimates survival.by.sex$se.real[1:2] # std errors survival.by.sex$vcv.real[1:2,1:2] # v-c matrix survival.by.sex$vcv.real[1,2]/prod(survival.by.sex$se.real[1:2]) # sampling correlation of the estimates
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.