Description Usage Arguments Value Methods Author(s) References See Also
Generic function for the computation of the optimal clipping bound/function. This function is rarely called directly. It is used to compute optimally robust ICs in case infinitesimal models.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 | getInfClipRegTS(clip, ErrorL2deriv, Regressor, risk, neighbor, ...)
## S4 method for signature
## 'numeric,UnivariateDistribution,Distribution,asMSE,Neighborhood'
getInfClipRegTS(
clip, ErrorL2deriv, Regressor, risk, neighbor, z.comp, stand, cent)
## S4 method for signature
## 'numeric,
## UnivariateDistribution,
## Distribution,
## asMSE,
## Av1CondTotalVarNeighborhood'
getInfClipRegTS(
clip, ErrorL2deriv, Regressor, risk, neighbor, z.comp, stand, cent)
## S4 method for signature
## 'numeric,EuclRandVariable,Distribution,asMSE,Neighborhood'
getInfClipRegTS(
clip, ErrorL2deriv, Regressor, risk, neighbor, ErrorDistr, stand,
cent, trafo)
## S4 method for signature
## 'numeric,
## UnivariateDistribution,
## UnivariateDistribution,
## asUnOvShoot,
## UncondNeighborhood'
getInfClipRegTS(
clip, ErrorL2deriv, Regressor, risk, neighbor, z.comp, cent)
## S4 method for signature
## 'numeric,UnivariateDistribution,numeric,asUnOvShoot,CondNeighborhood'
getInfClipRegTS(
clip, ErrorL2deriv, Regressor, risk, neighbor)
|
clip |
optimal clipping bound. |
ErrorL2deriv |
L2-derivative of |
Regressor |
regressor. |
risk |
object of class |
neighbor |
object of class |
... |
additional parameters. |
cent |
optimal centering constant/function. |
stand |
standardizing matrix. |
z.comp |
which components of the centering constant/function have to be computed. |
ErrorDistr |
error distribution. |
trafo |
matrix: transformation of the parameter. |
The optimal clipping bound/function is computed.
optimal clipping bound for asymtotic mean square error.
optimal clipping bound for asymtotic mean square error.
optimal clipping bound for asymtotic mean square error.
optimal clipping bound for asymtotic under-/overshoot risk.
optimal clipping function for asymtotic under-/overshoot risk.
Matthias Kohl Matthias.Kohl@stamats.de
Rieder, H. (1980) Estimates derived from robust tests. Ann. Stats. 8: 106–115.
Rieder, H. (1994) Robust Asymptotic Statistics. New York: Springer.
Kohl, M. (2005) Numerical Contributions to the Asymptotic Theory of Robustness. Bayreuth: Dissertation.
ContIC-class
, TotalVarIC-class
,
Av1CondContIC-class
, Av2CondContIC-class
,
Av1CondTotalVarIC-class
, CondContIC-class
,
CondTotalVarIC-class
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.