Description Usage Arguments Value Author(s) References See Also Examples
Generates an object of class "CondContIC"
;
i.e., an influence curves eta of the form
eta = (A Lambda - a)min(1, b/|A Lambda - a|)
with clipping function b, centering function a and
standardizing matrix A. Lambda stands for
the L2 derivative of the corresponding L2 differentiable
parametric family which can be created via CallL2Fam
.
1 2 3 4 5 6 7 8 9 10 11 | CondContIC(name, CallL2Fam = call("L2RegTypeFamily"),
Curve = EuclRandVarList(RealRandVariable(
Map = list(function(x){x[1]*x[2]}),
Domain = EuclideanSpace(dimension = 2))),
Risks, Infos,
clip = RealRandVariable(Map = list(function(x){ Inf }), Domain = Reals()),
stand = as.matrix(1),
cent = EuclRandVarList(RealRandVariable(
Map = list(function(x){numeric(length(x))}),
Domain = EuclideanSpace(dimension = 2))),
lowerCase = NULL, neighborRadius = 0, neighborRadiusCurve = function(x){1})
|
name |
object of class |
CallL2Fam |
object of class |
Curve |
object of class |
Risks |
object of class |
Infos |
matrix of characters with two columns
named |
clip |
object of class |
cent |
object of class |
stand |
matrix: standardizing matrix. |
lowerCase |
optional constant for lower case solution. |
neighborRadius |
radius of the corresponding conditional contamination neighborhood. |
neighborRadiusCurve |
radius curve of the corresponding conditional contamination neighborhood. |
Object of class "CondContIC"
Matthias Kohl Matthias.Kohl@stamats.de
Rieder, H. (1994) Robust Asymptotic Statistics. New York: Springer.
Kohl, M. (2005) Numerical Contributions to the Asymptotic Theory of Robustness. Bayreuth: Dissertation.
CondIC-class
, CondContIC-class
1 2 | IC1 <- CondContIC()
IC1
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.