GIC: Generalized Information Criterion (GIC) to compare models fit...

Description Usage Arguments Details Value Author(s) References See Also Examples

Description

The GIC allows comparing models fit by Maximum Likelihood (ML) or Penalized Likelihood (PL).

Usage

1
2
3
## S3 method for class 'fit_pl.rpanda'
GIC(object, ...)
  

Arguments

object

An object of class "fit_pl.rpanda". See ?fit_t_pl

...

Options to be passed through.

Details

GIC allows comparing the fit of various models estimated by Penalized Likelihood (see ?fit_t_pl). It's a wrapper to the gic_criterion function.

Value

a list with the following components

LogLikelihood

the log-likelihood estimated for the model with estimated parameters

GIC

the GIC criterion

bias

the value of the bias term estimated to compute the GIC

Author(s)

J. Clavel

References

Konishi S., Kitagawa G. 1996. Generalised information criteria in model selection. Biometrika. 83:875-890.

Clavel, J., Aristide, L., Morlon, H., 2019. A Penalized Likelihood framework for high-dimensional phylogenetic comparative methods and an application to new-world monkeys brain evolution. Syst. Biol. 68: 93-116.

See Also

gic_criterion, fit_t_pl mvgls

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
if(require(mvMORPH)){
set.seed(1)
n <- 32 # number of species
p <- 40 # number of traits

tree <- pbtree(n=n) # phylogenetic tree
R <- Posdef(p)      # a random symmetric matrix (covariance)
# simulate a dataset
Y <- mvSIM(tree, model="BM1", nsim=1, param=list(sigma=R))

fit1 <- fit_t_pl(Y, tree, model="BM", method="RidgeAlt")
fit2 <- fit_t_pl(Y, tree, model="OU", method="RidgeAlt")

GIC(fit1); GIC(fit2)
}

RPANDA documentation built on Nov. 10, 2021, 9:08 a.m.