Nothing
#' RStoolbox: A Collection of Remote Sensing Tools
#'
#' The RStoolbox package provides a set of functions which simplify performing standard remote sensing tasks in R.
#'
#' @section Data Import and Export:
#'
#' \itemize{
#' \item \code{\link{readMeta}}: import Landsat metadata from MTL or XML files
#' \item \code{\link{stackMeta}}, \code{\link{getMeta}}: load Landsat bands based on metadata
#' \item \code{\link{readSLI} & \link{writeSLI}}: read and write ENVI spectral libraries
#' \item \code{\link{saveRSTBX} & \link{readRSTBX}}: save and re-import RStoolbox classification objects (model and map)
#' \item \code{\link{readEE}}: import and tidy EarthExplorer search results
#' }
#'
#' @section Data Pre-Processing:
#'
#' \itemize{
#' \item \code{\link{radCor}}: radiometric conversions and corrections. Primarily, yet not exclusively, intended for Landsat data processing. DN to radiance to reflectance conversion as well as DOS approaches
#' \item \code{\link{topCor}}: topographic illumination correction
#' \item \code{\link{cloudMask} & \link{cloudShadowMask}}: mask clouds and cloud shadows in Landsat or other imagery which comes with a thermal band
#' \item \code{\link{classifyQA}}: extract layers from Landsat 8 QA bands, e.g. cloud confidence
#' \item \code{\link{encodeQA} & \link{decodeQA}}: encode/decode Landsat 16-bit QA bands.
#' \item \code{\link{rescaleImage}}: rescale image to match min/max from another image or a specified min/max range
#' \item \code{\link{normImage}}: normalize imagery by centering and scaling
#' \item \code{\link{oneHotEncode}}: one-hot encode a raster or vector
#' \item \code{\link{histMatch}}: matches the histograms of two scenes
#' \item \code{\link{pifMatch}}: matches one scene to another based on linear regression of Pseudo-Invariant Features (PIF)
#' \item \code{\link{coregisterImages}}: co-register images based on mutual information
#' \item \code{\link{panSharpen}}: sharpen a coarse resolution image with a high resolution image (typically panchromatic)
#' \item \code{\link{estimateHaze}}: estimate image haze for Dark Object Subtraction (DOS)
#' }
#'
#'@section Data Analysis:
#'
#' \itemize{
#' \item \code{\link{spectralIndices}}: calculate a set of predefined multispectral indices like NDVI
#' \item \code{\link{tasseledCap}}: tasseled cap transformation
#' \item \code{\link{sam}}: spectral angle mapper
#' \item \code{\link{rasterPCA}}: principal components transform for raster data
#' \item \code{\link{rasterCVA}}: change vector analysis
#' \item \code{\link{rasterEntropy}}: calculates shannon entropy
#' \item \code{\link{unsuperClass}}: unsupervised classification
#' \item \code{\link{superClass}}, \code{\link{validateMap}}, \code{\link{getValidation}}: supervised classification and validation
#' \item \code{\link{fCover}}: fractional cover of coarse resolution imagery based on high resolution classification
#' \item \code{\link{mesma}}: spectral unmixing using Multiple Endmember Spectral Mixture Analysis (MESMA)
#' }
#'
#' @section Data Display:
#'
#' \itemize{
#' \item \code{\link{ggR}}: single raster layer plotting with ggplot2
#' \item \code{\link{ggRGB}}: efficient plotting of remote sensing imagery in RGB with ggplot2
#' }
#'
#' @keywords earth-observation remote-sensing spatial-data-analysis
#'
#' "RStoolbox"
#'
#' @import sf terra
#' @importFrom exactextractr exact_extract
#' @importFrom lifecycle is_present deprecate_warn deprecated
#' @importFrom ggplot2 aes aes_string annotation_raster coord_equal fortify geom_raster geom_blank ggplot scale_fill_discrete scale_fill_gradientn scale_fill_identity facet_wrap
#' @importFrom caret confusionMatrix train trainControl postResample createDataPartition createFolds getTrainPerf
#' @importFrom reshape2 melt
#' @importFrom tidyr pivot_wider complete
#' @importFrom dplyr mutate group_by summarize filter
#' @importFrom XML xmlParse xmlToList
#' @importFrom stats coefficients cov.wt lm ecdf approxfun knots kmeans complete.cases loadings cov cor setNames
#' @importFrom graphics par abline
#' @importFrom methods as show
#' @importFrom utils read.csv read.delim read.table str write.table data capture.output
#' @importFrom grDevices hsv
#' @useDynLib RStoolbox
#' @importFrom Rcpp sourceCpp
#' @name RStoolbox
NULL
#' Rlogo as SpatRaster
#'
#' Tiny example of raster data used to run examples.
#'
#' @usage rlogo
#' @docType data
#' @keywords datasets
#' @name rlogo
#' @examples
#' ggRGB(rlogo,r = 1,g = 2,b = 3)
NULL
#' SRTM Digital Elevation Model
#'
#' DEM for the Landsat example area taken from SRTM v3 tile: s04_w050_1arc_v3.tif
#'
#' @usage srtm
#' @docType data
#' @keywords datasets
#' @name srtm
#' @examples
#' ggR(srtm)
NULL
#' Landsat 5TM Example Data
#'
#' Subset of Landsat 5 TM Scene: LT52240631988227CUB02
#' Contains all seven bands in DN format.
#'
#' @usage lsat
#' @docType data
#' @keywords datasets
#' @name lsat
#' @examples
#' ggRGB(lsat, stretch = "sqrt")
NULL
#' Sentinel 2 MSI L2A Scene
#'
#' Contains all 13 bands in already converted spectral reflectances
#'
#' @usage sen2
#' @docType data
#' @keywords datasets
#' @name sen2
#' @examples
#' ggRGB(sen2, r=4, g=3, b=2, stretch = "lin")
NULL
#' SRTM scene for the sen2 exemplary scene
#'
#' DEM for the Sentinel 2 example area taken from SRTM v4
#'
#' @usage srtm_sen2
#' @docType data
#' @keywords datasets
#' @name srtm_sen2
#' @examples
#' ggR(srtm_sen2)
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.