View source: R/gen-random-f-walk.R
| random_f_walk | R Documentation |
The random_f_walk function generates multiple random walks in 1, 2, or 3 dimensions.
Each walk is a sequence of steps where each step is a random draw from an F distribution.
The user can specify the number of walks, the number of steps in each walk, and the
parameters of the F distribution (df1, df2, ncp). The function
also allows for sampling a proportion of the steps and optionally sampling with replacement.
random_f_walk(
.num_walks = 25,
.n = 100,
.df1 = 5,
.df2 = 5,
.ncp = NULL,
.initial_value = 0,
.samp = TRUE,
.replace = TRUE,
.sample_size = 0.8,
.dimensions = 1
)
.num_walks |
An integer specifying the number of random walks to generate. Default is 25. |
.n |
An integer specifying the number of steps in each walk. Default is 100. |
.df1 |
Degrees of freedom 1 for the F distribution. Default is 5. |
.df2 |
Degrees of freedom 2 for the F distribution. Default is 5. |
.ncp |
Non-centrality parameter. Default is NULL (central F). |
.initial_value |
A numeric value indicating the initial value of the walks. Default is 0. |
.samp |
A logical value indicating whether to sample the F distribution values. Default is TRUE. |
.replace |
A logical value indicating whether sampling is with replacement. Default is TRUE. |
.sample_size |
A numeric value between 0 and 1 specifying the proportion of |
.dimensions |
An integer specifying the number of dimensions (1, 2, or 3). Default is 1. |
This function is a flexible generator for random walks where each step is drawn from an F distribution.
The user can control the number of walks, steps per walk, degrees of freedom (df1, df2), and optionally the non-centrality parameter (ncp).
If .ncp is left as NULL, the function generates F values using the ratio of chi-squared distributions as described in base R documentation.
The function supports 1, 2, or 3 dimensions, and augments the output with cumulative statistics for each walk.
Sampling can be performed with or without replacement, and a proportion of steps can be sampled if desired.
A tibble containing the generated random walks with columns depending on the number of dimensions:
walk_number: Factor representing the walk number.
step_number: Step index.
y: If .dimensions = 1, the value of the walk at each step.
x, y: If .dimensions = 2, the values of the walk in two dimensions.
x, y, z: If .dimensions = 3, the values of the walk in three dimensions.
The following are also returned based upon how many dimensions there are and could be any of x, y and or z:
cum_sum: Cumulative sum of dplyr::all_of(.dimensions).
cum_prod: Cumulative product of dplyr::all_of(.dimensions).
cum_min: Cumulative minimum of dplyr::all_of(.dimensions).
cum_max: Cumulative maximum of dplyr::all_of(.dimensions).
cum_mean: Cumulative mean of dplyr::all_of(.dimensions).
The tibble includes attributes for the function parameters.
Steven P. Sanderson II, MPH
Other Generator Functions:
brownian_motion(),
discrete_walk(),
geometric_brownian_motion(),
random_beta_walk(),
random_binomial_walk(),
random_cauchy_walk(),
random_chisquared_walk(),
random_displacement_walk(),
random_exponential_walk(),
random_gamma_walk(),
random_geometric_walk(),
random_hypergeometric_walk(),
random_logistic_walk(),
random_lognormal_walk(),
random_multinomial_walk(),
random_negbinomial_walk(),
random_normal_drift_walk(),
random_normal_walk(),
random_poisson_walk(),
random_smirnov_walk(),
random_t_walk(),
random_uniform_walk(),
random_weibull_walk(),
random_wilcox_walk(),
random_wilcoxon_sr_walk()
Other Continuous Distribution:
brownian_motion(),
geometric_brownian_motion(),
random_beta_walk(),
random_cauchy_walk(),
random_chisquared_walk(),
random_exponential_walk(),
random_gamma_walk(),
random_logistic_walk(),
random_lognormal_walk(),
random_normal_drift_walk(),
random_normal_walk(),
random_t_walk(),
random_uniform_walk(),
random_weibull_walk()
set.seed(123)
random_f_walk()
set.seed(123)
random_f_walk(.dimensions = 3) |>
head() |>
t()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.