View source: R/gen-random-smirnov-walk.R
| random_smirnov_walk | R Documentation |
The random_smirnov_walk function generates multiple random walks using the Smirnov distribution via rsmirnov().
The user can specify the number of walks, the number of steps in each walk, the sizes parameter, and the alternative hypothesis.
The function also allows for sampling a proportion of the steps and optionally sampling with replacement.
random_smirnov_walk(
.num_walks = 25,
.n = 100,
.sizes = c(1, 1),
.z = NULL,
.alternative = "two.sided",
.initial_value = 0,
.samp = TRUE,
.replace = TRUE,
.sample_size = 0.8,
.dimensions = 1
)
.num_walks |
An integer specifying the number of random walks to generate. Default is 25. |
.n |
An integer specifying the number of steps in each walk. Default is 100. |
.sizes |
A numeric vector of length 2 specifying the sizes parameter for rsmirnov. Default is c(1, 1). |
.z |
Optional numeric vector for the z parameter in rsmirnov. Default is NULL. |
.alternative |
One of "two.sided" (default), "less", or "greater". Indicates the type of test statistic. |
.initial_value |
A numeric value indicating the initial value of the walks. Default is 0. |
.samp |
A logical value indicating whether to sample the Smirnov values. Default is TRUE. |
.replace |
A logical value indicating whether sampling is with replacement. Default is TRUE. |
.sample_size |
A numeric value between 0 and 1 specifying the proportion of |
.dimensions |
An integer specifying the number of dimensions (1, 2, or 3). Default is 1. |
This function generates random walks where each step is drawn from the Smirnov distribution using rsmirnov().
The user can control the number of walks, steps per walk, the sizes parameter (default c(1, 1)), and the alternative hypothesis.
The parameter z can be provided or left as NULL (default). The function supports 1, 2, or 3 dimensions, and augments the output with cumulative statistics for each walk.
Sampling can be performed with or without replacement, and a proportion of steps can be sampled if desired.
A tibble containing the generated random walks with columns depending on the number of dimensions:
walk_number: Factor representing the walk number.
step_number: Step index.
y: If .dimensions = 1, the value of the walk at each step.
x, y: If .dimensions = 2, the values of the walk in two dimensions.
x, y, z: If .dimensions = 3, the values of the walk in three dimensions.
The following are also returned based upon how many dimensions there are and could be any of x, y and or z:
cum_sum: Cumulative sum of dplyr::all_of(.dimensions).
cum_prod: Cumulative product of dplyr::all_of(.dimensions).
cum_min: Cumulative minimum of dplyr::all_of(.dimensions).
cum_max: Cumulative maximum of dplyr::all_of(.dimensions).
cum_mean: Cumulative mean of dplyr::all_of(.dimensions).
The tibble includes attributes for the function parameters.
Steven P. Sanderson II, MPH
Other Generator Functions:
brownian_motion(),
discrete_walk(),
geometric_brownian_motion(),
random_beta_walk(),
random_binomial_walk(),
random_cauchy_walk(),
random_chisquared_walk(),
random_displacement_walk(),
random_exponential_walk(),
random_f_walk(),
random_gamma_walk(),
random_geometric_walk(),
random_hypergeometric_walk(),
random_logistic_walk(),
random_lognormal_walk(),
random_multinomial_walk(),
random_negbinomial_walk(),
random_normal_drift_walk(),
random_normal_walk(),
random_poisson_walk(),
random_t_walk(),
random_uniform_walk(),
random_weibull_walk(),
random_wilcox_walk(),
random_wilcoxon_sr_walk()
Other Discrete Distribution:
discrete_walk(),
random_binomial_walk(),
random_displacement_walk(),
random_geometric_walk(),
random_hypergeometric_walk(),
random_multinomial_walk(),
random_negbinomial_walk(),
random_poisson_walk(),
random_wilcox_walk(),
random_wilcoxon_sr_walk()
set.seed(123)
random_smirnov_walk()
set.seed(123)
random_smirnov_walk(.dimensions = 2) |>
head() |>
t()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.