Nothing
#' Discrete Sampled Walk
#'
#' @family Generator Functions
#'
#' @author Steven P. Sanderson II, MPH
#'
#' @description
#' The `discrete_walk` function generates multiple random walks over discrete time periods.
#' Each step in the walk is determined by a probabilistic sample from specified upper and lower bounds.
#' This function is useful for simulating stochastic processes, such as stock price movements or
#' other scenarios where outcomes are determined by a random process.
#'
#' @details
#' The function `discrete_walk` simulates random walks for a specified number of simulations
#' (`.num_walks`) over a given total time (`.n`). Each step in the walk is either the upper
#' bound or the lower bound, determined by a probability (`.upper_probability`). The initial
#' value of the walk is set by the user (`.initial_value`), and the cumulative sum, product,
#' minimum, and maximum of the steps are calculated for each walk. The results are returned
#' in a tibble with detailed attributes, including the parameters used for the simulation.
#'
#' @param .n Total time of the simulation.
#' @param .num_walks Total number of simulations.
#' @param .upper_bound The upper bound of the random walk.
#' @param .lower_bound The lower bound of the random walk.
#' @param .upper_probability The probability of the upper bound. Default is 0.5.
#' The lower bound is calculated as 1 - .upper_probability.
#' @param .initial_value The initial value of the random walk. Default is 100.
#' @param .dimensions The default is 1. Allowable values are 1, 2 and 3.
#'
#' @examples
#' set.seed(123)
#' discrete_walk()
#'
#' set.seed(123)
#' discrete_walk(.dimensions = 3) |>
#' head() |>
#' t()
#'
#' @return A tibble containing the generated random walks with columns depending
#' on the number of dimensions:
#' \itemize{
#' \item `walk_number`: Factor representing the walk number.
#' \item `step_number`: Step index.
#' \item `y`: If `.dimensions = 1`, the value of the walk at each step.
#' \item `x`, `y`: If `.dimensions = 2`, the values of the walk in two dimensions.
#' \item `x`, `y`, `z`: If `.dimensions = 3`, the values of the walk in three dimensions.
#' }
#'
#' The following are also returned based upon how many dimensions there are and
#' could be any of x, y and or z:
#' \itemize{
#' \item `cum_sum`: Cumulative sum of `dplyr::all_of(.dimensions)`.
#' \item `cum_prod`: Cumulative product of `dplyr::all_of(.dimensions)`.
#' \item `cum_min`: Cumulative minimum of `dplyr::all_of(.dimensions)`.
#' \item `cum_max`: Cumulative maximum of `dplyr::all_of(.dimensions)`.
#' \item `cum_mean`: Cumulative mean of `dplyr::all_of(.dimensions)`.
#' }
#'
#' @name discrete_walk
NULL
#' @export
#' @rdname discrete_walk
discrete_walk <- function(.num_walks = 25, .n = 100, .upper_bound = 1,
.lower_bound = -1, .upper_probability = 0.5,
.initial_value = 100, .dimensions = 1) {
# Variables
num_walks <- as.integer(.num_walks)
t <- as.integer(.n)
upper_bound <- as.numeric(.upper_bound)
lower_bound <- as.numeric(.lower_bound)
upper_probability <- as.numeric(.upper_probability)
lower_probability <- 1 - upper_probability
initial_value <- as.numeric(.initial_value)
dimensions <- as.integer(.dimensions)
# Checks
if (!is.integer(num_walks) | num_walks < 1) {
rlang::abort(
message = "The number of walks must be an integer greater than 0.",
use_cli_format = TRUE
)
}
if (!is.integer(t) | t < 1) {
rlang::abort(
message = "The number of periods must be an integer greater than 0.",
use_cli_format = TRUE
)
}
if (!is.numeric(upper_bound)) {
rlang::abort(
message = "The upper bound must be a numeric value.",
use_cli_format = TRUE
)
}
if (!is.numeric(lower_bound)) {
rlang::abort(
message = "The lower bound must be a numeric value.",
use_cli_format = TRUE
)
}
if (!is.numeric(upper_probability) | upper_probability < 0 | upper_probability > 1) {
rlang::abort(
message = "The upper probability must be a numeric value between 0 and 1.",
use_cli_format = TRUE
)
}
if (!is.numeric(initial_value)) {
rlang::abort(
message = "The initial value must be a numeric value.",
use_cli_format = TRUE
)
}
if (!is.integer(dimensions) | dimensions < 1 | dimensions > 3) {
rlang::abort(
message = "The number of dimensions must be an integer between 1 and 3.",
use_cli_format = TRUE
)
}
if (!.dimensions %in% c(1, 2, 3)) {
rlang::abort(
message = "The number of dimensions must be an integer between 1 and 3.",
use_cli_format = TRUE
)
}
# Define dimension names
dim_names <- switch(.dimensions,
`1` = c("y"),
`2` = c("x", "y"),
`3` = c("x", "y", "z"))
# Generate walks for each dimension
single_discrete_walk <- function(t, upper_bound, lower_bound,
upper_probability, lower_probability){
rand_steps <- purrr::map(
dim_names,
~ replicate(
n = t,
sample(
x = c(upper_bound, lower_bound),
size = 1,
prob = c(upper_probability, lower_probability))
)
)
# Set Column Names
# rand_steps <- stats::setNames(rand_steps, dim_names)
# rand_steps <- purrr::map(rand_steps, \(x) dplyr::as_tibble(x)) |>
# purrr::list_cbind()
# colnames(rand_steps) <- dim_names
# rand_steps <- purrr::map(
# rand_steps, \(x) x |>
# unlist(use.names = FALSE)) |>
# dplyr::as_tibble()
#
# # Combine into a tibble
# dplyr::tibble(
# walk_number = factor(num_walks),
# step_number = 1:t
# ) |>
# dplyr::bind_cols(rand_steps)
rand_walk_column_names(rand_steps, dim_names, num_walks, t)
}
# Generate walks
walks <- purrr::map(
1:num_walks,
~ single_discrete_walk(t, upper_bound, lower_bound,
upper_probability, lower_probability)
)
# Create a tibble with all walks for all dimensions
res <- dplyr::bind_rows(walks, .id = "walk_number") |>
dplyr::mutate(walk_number = factor(walk_number, levels = 1:num_walks)) |>
dplyr::group_by(walk_number) |>
dplyr::select(walk_number, step_number, dplyr::all_of(dim_names))
res <- res |>
dplyr::group_by(walk_number) |>
std_cum_sum_augment(.value = dplyr::all_of(dim_names), .initial_value = initial_value) |>
dplyr::ungroup()
res <- res |>
dplyr::group_by(walk_number) |>
std_cum_prod_augment(.value = dplyr::all_of(dim_names), .initial_value = initial_value) |>
dplyr::ungroup()
res <- res |>
dplyr::group_by(walk_number) |>
std_cum_min_augment(.value = dplyr::all_of(dim_names), .initial_value = initial_value) |>
dplyr::ungroup()
res <- res |>
dplyr::group_by(walk_number) |>
std_cum_max_augment(.value = dplyr::all_of(dim_names), .initial_value = initial_value) |>
dplyr::ungroup()
res <- res |>
dplyr::group_by(walk_number) |>
std_cum_mean_augment(.value = dplyr::all_of(dim_names), .initial_value = initial_value) |>
dplyr::ungroup()
# Attributes
attr(res, "n") <- t
attr(res, "num_walks") <- num_walks
attr(res, "upper_bound") <- upper_bound
attr(res, "lower_bound") <- lower_bound
attr(res, "upper_probability") <- upper_probability
attr(res, "lower_probability") <- lower_probability
attr(res, "initial_value") <- initial_value
attr(res, "fns") <- "discrete_walk"
attr(res, "dimension") <- dimensions
# Return
return(res)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.