EPDfit | R Documentation |
Fit the Extended Pareto Distribution (EPD) to data using Maximum Likelihood Estimation (MLE).
EPDfit(data, tau, start = c(0.1, 1), warnings = FALSE)
data |
Vector of |
tau |
Value for the |
start |
Vector of length 2 containing the starting values for the optimisation. The first element
is the starting value for the estimator of |
warnings |
Logical indicating if possible warnings from the optimisation function are shown, default is |
See Section 4.2.1 of Albrecher et al. (2017) for more details.
A vector with the MLE estimate for the \gamma
parameter of the EPD as the first component and the MLE estimate for the \kappa
parameter of the EPD as the second component.
Tom Reynkens
Albrecher, H., Beirlant, J. and Teugels, J. (2017). Reinsurance: Actuarial and Statistical Aspects, Wiley, Chichester.
Beirlant, J., Joossens, E. and Segers, J. (2009). "Second-Order Refined Peaks-Over-Threshold Modelling for Heavy-Tailed Distributions." Journal of Statistical Planning and Inference, 139, 2800–2815.
EPD
, GPDfit
data(soa)
# Look at last 500 observations of SOA data
SOAdata <- sort(soa$size)[length(soa$size)-(0:499)]
# Fit EPD to last 500 observations
res <- EPDfit(SOAdata/sort(soa$size)[500], tau=-1)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.