genHill: Generalised Hill estimator

View source: R/GenHill.R

genHillR Documentation

Generalised Hill estimator


Computes the generalised Hill estimator for real extreme value indices as a function of the tail parameter k. Optionally, these estimates are plotted as a function of k.


genHill(data, gamma, logk = FALSE, plot = FALSE, add = FALSE, 
        main = "Generalised Hill estimates of the EVI", ...)



Vector of n observations.


Vector of n-1 estimates for the EVI, typically Hill estimates are used.


Logical indicating if the estimates are plotted as a function of \log(k) (logk=TRUE) or as a function of k. Default is FALSE.


Logical indicating if the estimates should be plotted as a function of k, default is FALSE.


Logical indicating if the estimates should be added to an existing plot, default is FALSE.


Title for the plot, default is "Generalised Hill estimates of the EVI".


Additional arguments for the plot function, see plot for more details.


The generalised Hill estimator is an estimator for the slope of the k last points of the generalised QQ-plot:

\hat{\gamma}^{GH}_{k,n}=1/k\sum_{j=1}^k \log UH_{j,n}- \log UH_{k+1,n}

with UH_{j,n}=X_{n-j,n}H_{j,n} the UH scores and H_{j,n} the Hill estimates. This is analogous to the (ordinary) Hill estimator which is the estimator of the slope of the k last points of the Pareto QQ-plot when using constrained least squares.

See Section 4.2.2 of Albrecher et al. (2017) for more details.


A list with following components:


Vector of the values of the tail parameter k.


Vector of the corresponding generalised Hill estimates.


Tom Reynkens based on S-Plus code from Yuri Goegebeur.


Albrecher, H., Beirlant, J. and Teugels, J. (2017). Reinsurance: Actuarial and Statistical Aspects, Wiley, Chichester.

Beirlant J., Goegebeur Y., Segers, J. and Teugels, J. (2004). Statistics of Extremes: Theory and Applications, Wiley Series in Probability, Wiley, Chichester.

Beirlant, J., Vynckier, P. and Teugels, J.L. (1996). "Excess Function and Estimation of the Extreme-value Index". Bernoulli, 2, 293–318.

See Also

Hill, genQQ, Moment



# Hill estimator
H <- Hill(soa$size, plot=FALSE)
# Moment estimator
M <- Moment(soa$size)
# Generalised Hill estimator
gH <- genHill(soa$size, gamma=H$gamma)

# Plot estimates
plot(H$k[1:5000], M$gamma[1:5000], xlab="k", ylab=expression(gamma), type="l", ylim=c(0.2,0.5))
lines(H$k[1:5000], gH$gamma[1:5000], lty=2)
legend("topright", c("Moment", "Generalised Hill"), lty=1:2)

ReIns documentation built on Nov. 3, 2023, 5:08 p.m.