Nothing
## ----eval=FALSE, include=TRUE-------------------------------------------------
# knitr::opts_chunk$set(echo = TRUE)
#
# library(ReSurv)
# library(reticulate)
# use_virtualenv("pyresurv")
#
## ----eval=FALSE, include=TRUE-------------------------------------------------
# input_data_0 <- data_generator(
# random_seed = 1964,
# scenario = 0,
# time_unit = 1 / 360,
# years = 4,
# period_exposure = 200
# )
## ----eval=FALSE, include=TRUE-------------------------------------------------
# individual_data <- IndividualDataPP(
# data = input_data_0,
# id = NULL,
# categorical_features = "claim_type",
# continuous_features = "AP",
# accident_period = "AP",
# calendar_period = "RP",
# input_time_granularity = "days",
# output_time_granularity = "quarters",
# years = 4
# )
## ----eval=FALSE, include=TRUE-------------------------------------------------
#
# resurv_cv_xgboost <- ReSurvCV(
# IndividualDataPP = individual_data,
# model = "XGB",
# hparameters_grid = list(
# booster = "gbtree",
# eta = c(.001, .01, .2, .3),
# max_depth = c(3, 6, 8),
# subsample = c(1),
# alpha = c(0, .2, 1),
# lambda = c(0, .2, 1),
# min_child_weight = c(.5, 1)
# ),
# print_every_n = 1L,
# nrounds = 500,
# verbose = FALSE,
# verbose.cv = TRUE,
# early_stopping_rounds = 100,
# folds = 5,
# parallel = T,
# ncores = 2,
# random_seed = 1
# )
#
## ----eval=FALSE, include=TRUE-------------------------------------------------
#
# bounds <- list(
# num_layers = c(2L, 10L),
# num_nodes = c(2L, 10L),
# optim = c(1L, 2L),
# activation = c(1L, 2L),
# lr = c(.005, 0.5),
# xi = c(0, 0.5),
# eps = c(0, 0.5)
# )
#
## ----eval=FALSE, include=TRUE-------------------------------------------------
# library(ParBayesianOptimization)
## ----eval=FALSE, include=TRUE-------------------------------------------------
#
# obj_func <- function(num_layers,
# num_nodes,
# optim,
# activation,
# lr,
# xi,
# eps) {
# optim = switch(optim, "Adam", "SGD")
# activation = switch(activation, "LeakyReLU", "SELU")
# batch_size = as.integer(5000)
# number_layers = as.integer(num_layers)
# num_nodes = as.integer(num_nodes)
#
# deepsurv_cv <- ReSurvCV(
# IndividualDataPP = individual_data,
# model = "NN",
# hparameters_grid = list(
# num_layers = num_layers,
# num_nodes = num_nodes,
# optim = optim,
# activation = activation,
# lr = lr,
# xi = xi,
# eps = eps,
# tie = "Efron",
# batch_size = batch_size,
# early_stopping = 'TRUE',
# patience = 20
# ),
# epochs = as.integer(300),
# num_workers = 0,
# verbose = FALSE,
# verbose.cv = TRUE,
# folds = 3,
# parallel = FALSE,
# random_seed = as.integer(Sys.time())
# )
#
#
# lst <- list(
# Score = -deepsurv_cv$out.cv.best.oos$test.lkh,
#
# train.lkh = deepsurv_cv$out.cv.best.oos$train.lkh
# )
#
# return(lst)
# }
#
## ----eval=FALSE, include=TRUE-------------------------------------------------
#
# bayes_out <- bayesOpt(
# FUN = obj_func,
# bounds = bounds,
# initPoints = 50,
# iters.n = 1000,
# iters.k = 50,
# otherHalting = list(timeLimit = 18000)
# )
#
#
## ----eval=FALSE, include=TRUE-------------------------------------------------
#
# bounds <- list(
# eta = c(0, 1),
# max_depth = c(1L, 25L),
# min_child_weight = c(0, 50),
# subsample = c(0.51, 1),
# lambda = c(0, 15),
# alpha = c(0, 15)
# )
#
## ----eval=FALSE, include=TRUE-------------------------------------------------
# obj_func <- function(eta,
# max_depth,
# min_child_weight,
# subsample,
# lambda,
# alpha) {
# xgbcv <- ReSurvCV(
# IndividualDataPP = individual_data,
# model = "XGB",
# hparameters_grid = list(
# booster = "gbtree",
# eta = eta,
# max_depth = max_depth,
# subsample = subsample,
# alpha = lambda,
# lambda = alpha,
# min_child_weight = min_child_weight
# ),
# print_every_n = 1L,
# nrounds = 500,
# verbose = FALSE,
# verbose.cv = TRUE,
# early_stopping_rounds = 30,
# folds = 3,
# parallel = FALSE,
# random_seed = as.integer(Sys.time())
# )
#
# lst <- list(
# Score = -xgbcv$out.cv.best.oos$test.lkh,
# train.lkh = xgbcv$out.cv.best.oos$train.lkh
# )
#
# return(lst)
# }
#
## ----eval=FALSE, include=TRUE-------------------------------------------------
#
# library(DoParallel)
#
# cl <- makeCluster(parallel::detectCores())
# registerDoParallel(cl)
#
# clusterEvalQ(cl, {
# library("ReSurv")
# })
#
# bayes_out <- bayesOpt(
# FUN = obj_func
# ,
# bounds = bounds
# ,
# initPoints = length(bounds) + 20
# ,
# iters.n = 1000
# ,
# iters.k = 50
# ,
# otherHalting = list(timeLimit = 18000)
# ,
# parallel = TRUE
# )
#
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.