Nothing
## ----setup, include=FALSE-----------------------------------------------------
knitr::opts_chunk$set(echo = TRUE)
library(ReSurv)
library(ggplot2)
## ----eval=FALSE, include=TRUE-------------------------------------------------
# # Input data
#
# input_data_0 <- data_generator(
# random_seed = 1964,
# scenario = "alpha",
# time_unit = 1 / 360,
# years = 4,
# period_exposure = 200
# )
#
## ----eval=FALSE, include=TRUE-------------------------------------------------
# input_data_0 %>%
# as.data.frame() %>%
# mutate(claim_type = as.factor(claim_type)) %>%
# ggplot(aes(x = RT - AT, color = claim_type)) +
# stat_ecdf(size = 1) +
# labs(title = "Empirical distribution of simulated notification delays", x =
# "Notification delay (in days)", y = "Cumulative Density") +
# xlim(0, 1500) +
# scale_color_manual(
# values = c("royalblue", "#a71429"),
# labels = c("Claim type 0", "Claim type 1")
# ) +
# scale_linetype_manual(values = c(1, 3),
# labels = c("Claim type 0", "Claim type 1")) +
# guides(
# color = guide_legend(title = "Claim type", override.aes = list(
# color = c("royalblue", "#a71429"), size = 2
# )),
# linetype = guide_legend(
# title = "Claim type",
# override.aes = list(linetype = c(1, 3), size = 0.7)
# )
# ) +
# theme_bw()
## ----include=TRUE, eval =FALSE------------------------------------------------
#
# input_data_1 <- data_generator(
# random_seed = 1964,
# scenario = 1,
# time_unit = 1 / 360,
# years = 4,
# period_exposure = 200
# )
#
## ----eval=FALSE, include=TRUE-------------------------------------------------
# input_data_1 %>%
# as.data.frame() %>%
# mutate(claim_type = as.factor(claim_type)) %>%
# ggplot(aes(x = RT - AT, color = claim_type)) +
# stat_ecdf(size = 1) +
# labs(title = "Empirical distribution of simulated notification delays", x =
# "Notification delay (in days)", y = "Cumulative Density") +
# xlim(0, 1500) +
# scale_color_manual(
# values = c("royalblue", "#a71429"),
# labels = c("Claim type 0", "Claim type 1")
# ) +
# scale_linetype_manual(values = c(1, 3),
# labels = c("Claim type 0", "Claim type 1")) +
# guides(
# color = guide_legend(title = "Claim type", override.aes = list(
# color = c("royalblue", "#a71429"), size = 2
# )),
# linetype = guide_legend(
# title = "Claim type",
# override.aes = list(linetype = c(1, 3), size = 0.7)
# )
# ) +
# theme_bw()
## -----------------------------------------------------------------------------
# Input data
input_data_2 <- data_generator(
random_seed = 1964,
scenario = 2,
time_unit = 1 / 360,
years = 4,
period_exposure = 200
)
## ----eval=FALSE, include=TRUE-------------------------------------------------
# input_data_2 %>%
# as.data.frame() %>%
# mutate(claim_type = as.factor(claim_type)) %>%
# ggplot(aes(x = RT - AT, color = claim_type)) +
# stat_ecdf(size = 1) +
# labs(title = "Empirical distribution of simulated notification delays", x =
# "Notification delay (in days)", y = "Cumulative Density") +
# xlim(0, 1500) +
# scale_color_manual(
# values = c("royalblue", "#a71429"),
# labels = c("Claim type 0", "Claim type 1")
# ) +
# scale_linetype_manual(values = c(1, 3),
# labels = c("Claim type 0", "Claim type 1")) +
# guides(
# color = guide_legend(title = "Claim type", override.aes = list(
# color = c("royalblue", "#a71429"), size = 2
# )),
# linetype = guide_legend(
# title = "Claim type",
# override.aes = list(linetype = c(1, 3), size = 0.7)
# )
# ) +
# theme_bw()
## -----------------------------------------------------------------------------
input_data_3 <- data_generator(
random_seed = 1964,
scenario = 3,
time_unit = 1 / 360,
years = 4,
period_exposure = 200
)
## ----eval=FALSE, include=TRUE-------------------------------------------------
# input_data_3 %>%
# as.data.frame() %>%
# mutate(claim_type = as.factor(claim_type)) %>%
# ggplot(aes(x = RT - AT, color = claim_type)) +
# stat_ecdf(size = 1) +
# labs(title = "Empirical distribution of simulated notification delays", x =
# "Notification delay (in days)", y = "Cumulative Density") +
# xlim(0, 1500) +
# scale_color_manual(
# values = c("royalblue", "#a71429"),
# labels = c("Claim type 0", "Claim type 1")
# ) +
# scale_linetype_manual(values = c(1, 3),
# labels = c("Claim type 0", "Claim type 1")) +
# guides(
# color = guide_legend(title = "Claim type", override.aes = list(
# color = c("royalblue", "#a71429"), size = 2
# )),
# linetype = guide_legend(
# title = "Claim type",
# override.aes = list(linetype = c(1, 3), size = 0.7)
# )
# ) +
# theme_bw()
## -----------------------------------------------------------------------------
# Input data
input_data_4 <- data_generator(
random_seed = 1964,
scenario = 4,
time_unit = 1 / 360,
years = 4,
period_exposure = 200
)
## ----eval=FALSE, include=TRUE-------------------------------------------------
# input_data_4 %>%
# as.data.frame() %>%
# mutate(claim_type = as.factor(claim_type)) %>%
# ggplot(aes(x = RT - AT, color = claim_type)) +
# stat_ecdf(size = 1) +
# labs(title = "Empirical distribution of simulated notification delays", x =
# "Notification delay (in days)", y = "Cumulative Density") +
# xlim(0, 1500) +
# scale_color_manual(
# values = c("royalblue", "#a71429"),
# labels = c("Claim type 0", "Claim type 1")
# ) +
# scale_linetype_manual(values = c(1, 3),
# labels = c("Claim type 0", "Claim type 1")) +
# guides(
# color = guide_legend(title = "Claim type", override.aes = list(
# color = c("royalblue", "#a71429"), size = 2
# )),
# linetype = guide_legend(
# title = "Claim type",
# override.aes = list(linetype = c(1, 3), size = 0.7)
# )
# ) +
# theme_bw()
#
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.