regfac.expand.2par: Expander Function for Two-Parameter Base Distributions

Description Usage Arguments Value Author(s) References See Also Examples

View source: R/expanders.R

Description

This function produces the full, high-dimensional gradient and Hessian from the base-distribution derivatives for linear transformations of the arguments of a two-parameter base distribution.

Usage

1
2
regfac.expand.2par(coeff, X, Z=matrix(1.0, nrow=nrow(X), ncol=1)
  , y, fbase2, fgh=2, block.diag=FALSE, ...)

Arguments

coeff

Vector of coefficients in the regression model. The first ncol(X) elements correspond to the first parameter of the base distribution fbase2(u, v, y, ...), and the next ncol(Z) elements corresponds to the second parameter of the base distribution fbase2(u, v, y, ...).

X

Matrix of covariates corresponding to the first parameter of the base distribution fbase2(u, v, y, ...).

Z

Matrix of covariates corresponding to the second parameter of the base distribution fbase2(u, v, y, ...). Default is a single column of 1's, corresponding to an intercept-only model for the second parameter, i.e. assuming the second parameter is constant across all observations. Note that nrow(Z) must be equal to nrow(X).

y

Vector of response variables. Note that length(y) must be equal to nrow(X).

fbase2

Base distribution function fbase2(u, v, y, ...) for the regression model. It must return a list with elements f,g,h corresponding to the function and its first and second derivatives relative to its first two argument, u,v. The gradient must be a matrix of dimensions nrow(X)-by-2, where the first column is the gradient of the log-likelihood function with respect to its first parameter (fbase2_u), evaluated at each of the nrow(X) observations, and the second column is the gradient of the log-likelihood function with repsect to its second parameter (fbase2_v), also evaluated at each observation point. Similarly, the Hessian must be a matrix of dimensions nrow(X)-by-3, with elements being equal to fbase2_uu, fbase2_vv and fbase2_uv evaluated at each observation point (taking advantage of the Hessian being symmetric).

fgh

Integer with possible values 0,1,2. If fgh=0, the function only calculates and returns the log-likelihood function. If fgh=1, it returns the log-likelihood and its gradient vector. If fgh=2, it returns the log-likelihood, the gradient vector and the Hessian matrix.

block.diag

If TRUE, Hessian matrix is block-diagonalized by setting cross-terms between beta and gamma to zero. This can be useful if the full - i.e. non-block-diagonalized - Hessian is not negative definite, but block-diagonalization leads to definiteness. If TRUE, third element of the Hessian of fbase is not needed and thus it can be vector of length 2 instead of 3.

...

Other arguments to be passed to fbase2.

Value

A list with elements f,g,h corresponding to the function, gradient vector, and Hessian matrix of the function fbase2(X%*%beta, Z%*%gamma, y, ...), where beta=coeff[1:ncol(X)] and gamma=coeff[ncol(X)+1:ncol(Z)]. (Derivatives are evaluated relative to coeff.) In other words, the base function fbase2(u, v, y, ...) is projected onto the high-dimensional space of c(beta, gamma) through the linear transformations of its first argument (u <- X%*%beta) and its second argument (v <- Z%*%gamma).

Author(s)

Alireza S. Mahani, Mansour T.A. Sharabiani

References

Mahani, Alireza S. and Sharabiani, Mansour T.A. (2013) Metropolis-Hastings Sampling Using Multivariate Gaussian Tangents https://arxiv.org/pdf/1308.0657v1.pdf

See Also

regfac.expand.1par

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
## Not run: 
library(dglm)
library(sns)

# defining log-likelihood function
loglike.linreg <- function(coeff, X, y) {
  regfac.expand.2par(coeff = coeff, X = X, Z = X, y = y
    , fbase2 = fbase2.gaussian.identity.log, fgh = 2, block.diag = T)
}

# simulating data according to generative model
N <- 1000 # number of observations
K <- 5 # number of covariates
X <- matrix(runif(N*K, min=-0.5, max=+0.5), ncol=K)
beta <- runif(K, min=-0.5, max=+0.5)
gamma <- runif(K, min=-0.5, max=+0.5)
mean.vec <- X%*%beta
sd.vec <- exp(X%*%gamma)
y <- rnorm(N, mean.vec, sd.vec)

# estimation using dglm
est.dglm <- dglm(y~X-1, dformula = ~X-1, family = "gaussian", dlink = "log")
beta.dglm <- est.dglm$coefficients
gamma.dglm <- est.dglm$dispersion.fit$coefficients

# estimation using RegressionFactory
coeff.tmp <- rep(0, 2*K)
for (n in 1:10) {
  coeff.tmp <- sns(coeff.tmp, fghEval=loglike.linreg
    , X=X, y=y, rnd = F)
}
beta.regfac.vd <- coeff.tmp[1:K]
gamma.regfac.vd <- coeff.tmp[K+1:K]

# comparing dglm and RegressionFactory results
# neither beta's nor gamma's will match exactly
cbind(beta.dglm, beta.regfac.vd)
cbind(gamma.dglm, gamma.regfac.vd)

## End(Not run)

RegressionFactory documentation built on Oct. 26, 2020, 9:07 a.m.