| EOFNH | R Documentation | 
The Extended Odd Frechet-Nadarjad-Hanhighi family
EOFNH(mu.link = "log", sigma.link = "log", nu.link = "log", tau.link = "log")
| mu.link | defines the mu.link, with "log" link as the default for the mu parameter. | 
| sigma.link | defines the sigma.link, with "log" link as the default for the sigma. | 
| nu.link | defines the nu.link, with "log" link as the default for the nu parameter. | 
| tau.link | defines the tau.link, with "log" link as the default for the tau parameter. | 
The Extended Odd Frechet-Nadarjad-Hanhighi  distribution with parameters mu, 
sigma, nu and tau has density given by
f(x)= \frac{μσντ(1+ν x)^{σ-1}e^{(1-(1+ν x)^σ)}[1-(1-e^{(1-(1+ν x)^σ)})^{μ}]^{τ-1}}{(1-e^{(1-(1+ν x)^{σ})})^{μτ+1}} e^{-[(1-e^{(1-(1+ν x)^σ)})^{-μ}-1]^{τ}},
for x > 0, μ > 0, σ > 0, ν > 0 and τ > 0.
Returns a gamlss.family object which can be used to fit a EOFNH distribution in the gamlss() function.
Johan David Marin Benjumea, johand.marin@udea.edu.co
nasiru2018extendedRelDists
dEOFNH
# Example 1
# Generating some random values with
# known mu, sigma, nu and tau
y <- rEOFNH(n=100, mu=1, sigma=2.1, nu=0.8, tau=1)
# Fitting the model
require(gamlss)
mod <- gamlss(y~1, sigma.fo=~1, nu.fo=~1, tau.fo=~1, family=EOFNH,
              control=gamlss.control(n.cyc=5000, trace=FALSE))
# Extracting the fitted values for mu, sigma, nu and tau
# using the inverse link function
exp(coef(mod, what='mu'))
exp(coef(mod, what='sigma'))
exp(coef(mod, what='nu'))
exp(coef(mod, what='tau'))
# Example 2
# Generating random values under some model
n <- 200
x1 <- runif(n, min=0.4, max=0.6)
x2 <- runif(n, min=0.4, max=0.6)
mu <- exp(0.5 + x1)
sigma <- exp(0.8 + x2)
nu <- 1
tau <- 0.5
x <- rEOFNH(n=n, mu, sigma, nu, tau)
mod <- gamlss(x~x1, sigma.fo=~x2, nu.fo=~1, tau.fo=~1, family=EOFNH,
              control=gamlss.control(n.cyc=5000, trace=FALSE))
coef(mod, what="mu")
coef(mod, what="sigma")
exp(coef(mod, what="nu"))
exp(coef(mod, what="tau"))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.