| KumIW | R Documentation |
The Kumaraswamy Inverse Weibull family
KumIW(mu.link = "log", sigma.link = "log", nu.link = "log")
mu.link |
defines the mu.link, with "log" link as the default for the mu parameter. |
sigma.link |
defines the sigma.link, with "log" link as the default for the sigma. |
nu.link |
defines the nu.link, with "log" link as the default for the nu parameter. |
The Kumaraswamy Inverse Weibull Distribution with parameters mu,
sigma and nu has density given by
f(x)= μ σ ν x^{-μ - 1} \exp{- σ x^{-μ}} (1 - \exp{- σ x^{-μ}})^{ν - 1},
for x > 0, μ > 0, σ > 0 and ν > 0.
Returns a gamlss.family object which can be used to fit a KumIW distribution in the gamlss() function.
Johan David Marin Benjumea, johand.marin@udea.edu.co
almalki2014modificationsRelDists
\insertRefshahbaz2012kumaraswamyRelDists
dKumIW
# Example 1
# Generating some random values with
# known mu, sigma, nu and tau
y <- rKumIW(n=1000, mu = 1.5, sigma= 1.5, nu = 5)
# Fitting the model
require(gamlss)
mod <- gamlss(y~1, sigma.fo=~1, nu.fo=~1, family='KumIW',
control=gamlss.control(n.cyc=5000, trace=FALSE))
# Extracting the fitted values for mu, sigma and nu
# using the inverse link function
exp(coef(mod, what='mu'))
exp(coef(mod, what='sigma'))
exp(coef(mod, what='nu'))
# Example 2
# Generating random values under some model
n <- 200
x1 <- runif(n, min=0.4, max=0.6)
x2 <- runif(n, min=0.4, max=0.6)
mu <- exp(1 - x1)
sigma <- exp(1 - x2)
nu <- 5
x <- rKumIW(n=n, mu, sigma, nu)
mod <- gamlss(x~x1, sigma.fo=~x2, nu.fo=~1, family=KumIW,
control=gamlss.control(n.cyc=5000, trace=FALSE))
coef(mod, what="mu")
coef(mod, what="sigma")
exp(coef(mod, what="nu"))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.