| MOEIW | R Documentation | 
The Marshall-Olkin Extended Inverse Weibull family
MOEIW(mu.link = "log", sigma.link = "log", nu.link = "log")
mu.link | 
 defines the mu.link, with "log" link as the default for the mu parameter.  | 
sigma.link | 
 defines the sigma.link, with "log" link as the default for the sigma.  | 
nu.link | 
 defines the nu.link, with "log" link as the default for the nu parameter.  | 
The Marshall-Olkin Extended Inverse Weibull distribution with parameters mu, 
sigma and nu has density given by
f(x) = \frac{μ σ ν x^{-(σ + 1)} exp\{{-μ x^{-σ}}\}}{\{ν -(ν-1) exp\{{-μ x ^{-σ}}\} \}^{2}},
for x > 0.
Returns a gamlss.family object which can be used to fit a MOEIW distribution in the gamlss() function.
Amylkar Urrea Montoya, amylkar.urrea@udea.edu.co
okasha2017RelDists
dMOEIW
# Example 1
# Generating some random values with
# known mu, sigma and nu
y <- rMOEIW(n=400, mu=0.6, sigma=1.7, nu=0.3)
# Fitting the model
require(gamlss)
mod <- gamlss(y~1, sigma.fo=~1, nu.fo=~1, family='MOEIW',
              control=gamlss.control(n.cyc=5000, trace=FALSE))
# Extracting the fitted values for mu, sigma and nu
# using the inverse link function
exp(coef(mod, what='mu'))
exp(coef(mod, what='sigma'))
exp(coef(mod, what='nu'))
# Example 2
# Generating random values under some model
n <- 400
x1 <- runif(n, min=0.4, max=0.6)
x2 <- runif(n, min=0.4, max=0.6)
mu <- exp(-2.02 + 3 * x1)
sigma <- exp(2.23 - 2 * x2)
nu <- 0.3
x <- rMOEIW(n=n, mu, sigma, nu)
mod <- gamlss(x~x1, sigma.fo=~x2, nu.fo=~1, family=MOEIW,
              control=gamlss.control(n.cyc=5000, trace=FALSE))
coef(mod, what="mu")
coef(mod, what="sigma")
exp(coef(mod, what="nu"))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.