| MOK | R Documentation |
The Marshall-Olkin Kappa family
MOK(mu.link = "log", sigma.link = "log", nu.link = "log", tau.link = "log")
mu.link |
defines the mu.link, with "log" link as the default for the mu parameter. |
sigma.link |
defines the sigma.link, with "log" link as the default for the sigma. |
nu.link |
defines the nu.link, with "log" link as the default for the nu parameter. |
tau.link |
defines the tau.link, with "log" link as the default for the tau parameter. |
The Marshall-Olkin Kappa distribution with parameters mu,
sigma, nu and tau has density given by
f(x)=\frac{τ\frac{μν}{σ}≤ft(\frac{x}{σ}\right)^{ν-1} ≤ft(μ+≤ft(\frac{x}{σ}\right)^{μν}\right)^{-\frac{μ+1}{μ}}}{≤ft(τ+(1-τ)≤ft(\frac{≤ft(\frac{x}{σ}\right)^{μν}}{μ+≤ft(\frac{x}{σ}\right)^{μν}}\right)^{\frac{1}{μ}}\right)^2}
for x > 0.
Returns a gamlss.family object which can be used to fit a MOK distribution in the gamlss() function.
Johan David Marin Benjumea, johand.marin@udea.edu.co
javed2018marshallRelDists
dMOK
# Example 1
# Generating some random values with
# known mu, sigma, nu and tau
y <- rMOK(n=100, mu = 1, sigma = 3.5, nu = 3, tau = 2)
# Fitting the model
require(gamlss)
mod <- gamlss(y~1, sigma.fo=~1, nu.fo=~1, tau.fo=~1, family=MOK,
control=gamlss.control(n.cyc=5000, trace=FALSE))
# Extracting the fitted values for mu, sigma, nu and tau
# using the inverse link function
exp(coef(mod, what='mu'))
exp(coef(mod, what='sigma'))
exp(coef(mod, what='nu'))
exp(coef(mod, what='tau'))
# Example 2
# Generating random values under some model
n <- 200
x1 <- runif(n, min=0.4, max=0.6)
x2 <- runif(n, min=0.4, max=0.6)
mu <- exp(0.5 + x1)
sigma <- exp(0.8 + x2)
nu <- 1
tau <- 0.5
x <- rMOK(n=n, mu, sigma, nu, tau)
mod <- gamlss(x~x1, sigma.fo=~x2, nu.fo=~1, tau.fo=~1, family=MOK,
control=gamlss.control(n.cyc=5000, trace=FALSE))
coef(mod, what="mu")
coef(mod, what="sigma")
exp(coef(mod, what="nu"))
exp(coef(mod, what="tau"))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.