Parametric and non-parametric bootstrap for linear regression model | R Documentation |
Parametric and non-parametric bootstrap for linear regression model.
lm.parboot(x, y, R = 1000)
lm.nonparboot(x, y, R = 1000)
x |
The predictor variables, a vector or a matrix or a data frame. |
y |
The response variable, a numerical vector with data. |
R |
The number of parametric bootstrap replications to perform. |
An efficient implementation of parametric or non-parametric bootstrapping the residuals for linear models is provided.
A matrix with R columns and rows equal to the number of the regression parameters. Each column contains the set of a bootstrap beta regression coefficients.
Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.
Efron Bradley and Robert J. Tibshirani (1993). An introduction to the bootstrap. New York: Chapman & Hall/CRC.
lm.drop1, leverage, pc.sel, mmpc
y <- rnorm(50)
x <- matrix( rnorm( 50 * 2), ncol = 2 )
a <- lm.parboot(x, y, 500)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.