refmeta: Random effects and weighted least squares meta analysis

View source: R/refmeta.R

Random effects and weighted least squares meta analysisR Documentation

Random effects and weighted least squares meta analysis

Description

Random effects and weighted least squares meta analysis.

Usage

refmeta(yi, vi, tol = 1e-07) 
wlsmeta(yi, vi) 

Arguments

yi

The observations.

vi

The variances of the observations.

tol

The toleranve value to terminate Brent's algorithm.

Details

The refmeta command performs random effects estimation, via restricted maximum likelihood estimation (REML), of the common mean. The wlsmeta command implements weighted least squares (WLS) meta analysis. See references for this.

Value

A vector with many elements. The fixed effects mean estimate, the \bar{v} estimate, the I^2, the H^2, the Q test statistic and it's p-value, the \tau^2 estimate and the random effects mean estimate.

Author(s)

Michail Tsagris.

R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Annamaria Guolo and Cristiano Varin (2017). Random-effects meta-analysis: The number of studies matters. Statistical Methods in Medical Research, 26(3): 1500-1518.

Stanley T. D. and Doucouliagos H. (2015). Neither fixed nor random: weighted least squares meta-analysis. Statistics in Medicine, 34(13): 2116-2127.

See Also

bic.regs

Examples

y <- rnorm(30)
vi <- rexp(30, 3)
refmeta(y, vi)
wlsmeta(y, vi)

Rfast2 documentation built on May 29, 2024, 8:45 a.m.