inst/example/OWAEvaluation.r

library("Rfmtool")


#function to compute (MAE).
mae <- function(obs, pred) mean(abs(obs-pred))


#Wrapper function to estimate OWA weights from data.

fm.fittingOWA<- function(data)
{
	size <- dim(as.matrix(data));
	n <- size[2] - 1;
	datanum <- size[1];
	WeightVal <- array(0,n);
 
	WeightValue <- .C("fittingOWACall", as.integer(n),
	  				    as.integer(datanum),
			              out = as.numeric(WeightVal),
			                    as.numeric(t(data)));
					
	return (WeightValue$out);
}

#Wrapper function to comput OWA value for a given input x and estimated weight v.
fm.OWA <- function(x,v)
{
	OWAVal <- -1; #this is just a initial value.
	OWAValue <- .C("OWACall", as.numeric(x),
				  as.numeric(v),
				  as.integer(length(x)),
			    out = as.numeric(OWAVal));
        return (OWAValue$out);
}



#function to evaluate a given data set using 10-fold cross validation
#Mean Absolute Error (MAE) is used to measure the performance.

evalfunc <- function(datafile)
{
data <- as.matrix(read.table(datafile));
size <- dim(as.matrix(data));
row <- size[1];
col <- size[2];
inputdim <- col - 1;


#evaluate the Choquet integral using 10-fold cross validation,
k <- 10;
id <- sample(rep(seq_len(k), length.out=nrow(data)));

kadderror <- array(0,c(1,inputdim));

maeVal <- array(0,c(1,k));	
for (i in seq_len(k))
{
	test_matrix <- data [id==i, ];
      train_matrix <- data [id!=i, ];
	
	#estimate OWA weights from training data.
	cat("estimating OWA weights for the", i, "th iternation...\n");
	estweight <- fm.fittingOWA(train_matrix);
	
	predicVal <- array(0,c(1,nrow(test_matrix)));
	originVal <- array(0,c(1,nrow(test_matrix)));

	count <- 1;
	for (f in seq_len(nrow(test_matrix)))
	{
		eachrec <- test_matrix[f,];
		#compute OWA value
		OWAVal <- fm.OWA(eachrec[1:col-1],estweight);
		
		predicVal[count] <- OWAVal ;
		originVal[count] <- eachrec[col];
		count <- count +1;
	}
	maeVal[i] <- mae(originVal,predicVal);
}

return(mean(maeVal));
}


#The main evaluation routine is here.

#load data from files.
#perform 10-fold cross validation for different data sets with k-additive.
#k can be set to values from 1 to n continuously.

busidata <- "../data/Preprocessed/Business.txt";
busierror <- evalfunc(busidata);

coupdata <- "../data/Preprocessed/Couple.txt";
couperror <- evalfunc(coupdata);

famidata <- "../data/Preprocessed/Family.txt";
famierror <- evalfunc(famidata);

#Note that the estimated MAE can vary slightly between different runs 
#due to the randomness of cross validation procedure.

Try the Rfmtool package in your browser

Any scripts or data that you put into this service are public.

Rfmtool documentation built on June 5, 2018, 5:04 p.m.